В равнобедренном треуг углы при основании равны. пусть АВС-треуг, угол А и угол С углы при оснвании=50 град. тогда угол В = 180-50-50=80 град. опустим высоту АК из угла А на сторону ВС. рассмотрим треугольник АКС, Угол АКС=90 град, угол С=50 град, угол КАС=180-90-50=40 град, значит угол ВАК=50-40=10 град. аналогично решаем задачу, если опустить высоту из углаС., так как треуг равнобыдренн, то улы получившиеся будут равны как в первом случае. Если мы опустим высоту из вершины В то она буде являться как биссектриссой, так и медианой.
А) О - середина АС ⇒ ОС/АС = 1/2 ВС = АЕ (АВСЕ - прямоугольник) АЕ = ЕД (по условию)⇒ ВС/АД = 1/2
ΔАСД - равнобедренный (СЕ - высота и медиана)⇒ АС = СД ВО = АС/2 так как ВО половина диагонали ВЕ прямоугольника АВСЕ ⇒ ⇒ВО/СД = 1/2 ⇒ ΔВОС подобен ΔАСД, а значит и BO/BC = CD/AD
б) ΔВОС подобен ΔАСД (доказано в пункте а) коэффициент подобия этих треугольников к = ВО/СД = 1/2 отношение площадей равно квадрату коэффициента подобия Sboc/Sacd = k² = 1/4 Saobcd = Sboc + Sacd = S из отношения Sboc/Sacd =1/4 ясно, что площадь ΔАСД составляет 4/5 площади АОВСД, значит Sacd = 4S/5
О - середина АС ⇒ ОС/АС = 1/2
ВС = АЕ (АВСЕ - прямоугольник) АЕ = ЕД (по условию)⇒ ВС/АД = 1/2
ΔАСД - равнобедренный (СЕ - высота и медиана)⇒ АС = СД
ВО = АС/2 так как ВО половина диагонали ВЕ прямоугольника АВСЕ ⇒
⇒ВО/СД = 1/2 ⇒ ΔВОС подобен ΔАСД,
а значит и BO/BC = CD/AD
б) ΔВОС подобен ΔАСД (доказано в пункте а)
коэффициент подобия этих треугольников к = ВО/СД = 1/2
отношение площадей равно квадрату коэффициента подобия
Sboc/Sacd = k² = 1/4
Saobcd = Sboc + Sacd = S
из отношения Sboc/Sacd =1/4 ясно, что площадь ΔАСД составляет 4/5 площади АОВСД, значит Sacd = 4S/5