У ромба диагонали взаимно перпендикулярны. Его можно рассматривать, как 2 соединённых треугольника вершинами в разные стороны. Тогда линия, соединяющая 2 соседние стороны ромба - это средняя линия треугольника и она параллельна основанию, то есть диагонали. Аналогично, рассматривая второй треугольник, у него тоже средняя линия параллельна основанию и паралленльна первой линии. Теперь можно перейти к другой диагонали и получит аналогичный результат - линии, соединяющие середины ромба, параллельны между собой и диагоналям. То есть, между ними углы по 90 градусов - это и есть доказательство того, что если последовательно соединить середины сторон ромба, то получится прямоугольник.
проведем радиусы в точки пересечения секущей ОР и ON
треугольник ОРN - равнобедренный, его высота ОК=3 является также и медианой, т.е. PK=KN=PN / 2 = 10 / 2 = 5
из прямоугольного треугольника OKN по теореме Пифагора определим радиус, он равен гипотенузе треугольника с катетами 3 и 5 см
R = OP = ON = OM = √(5^2 + 3^2) = √(25 + 9) = √34 см ~~ 5,8 см
ответ немного смущает, но видимо это "модификация" преподавателя, для защиты от списывания, наверное цифры у Сканави были другие, если конечно я не ошибся в "расчётах"
Его можно рассматривать, как 2 соединённых треугольника вершинами в разные стороны.
Тогда линия, соединяющая 2 соседние стороны ромба - это средняя линия треугольника и она параллельна основанию, то есть диагонали.
Аналогично, рассматривая второй треугольник, у него тоже средняя линия параллельна основанию и паралленльна первой линии.
Теперь можно перейти к другой диагонали и получит аналогичный результат - линии, соединяющие середины ромба, параллельны между собой и диагоналям.
То есть, между ними углы по 90 градусов - это и есть доказательство того, что если последовательно соединить середины сторон ромба, то получится прямоугольник.
АN - секкущая АР - её внешняя часть
О - цент окружности
ОК - растояние до секущей
АМ=12
АN= 18
ОК= 3
ОМ=?
для решения воспользуемся без доказательства теоремой о свойствах касательной и секущей проведенной из одной точки:
Теорема
"Произведение всей секущей на её ВНЕШНЮЮ часть равно квадрату касательной"
т.о. АМ*АМ=АМ^2 = AP*AN 12*12 = AP*18 AP=(12*12)/18 =8
PN=AN - AP =18 - 8 = 10
проведем радиусы в точки пересечения секущей ОР и ON
треугольник ОРN - равнобедренный, его высота ОК=3 является также и медианой, т.е. PK=KN=PN / 2 = 10 / 2 = 5
из прямоугольного треугольника OKN по теореме Пифагора определим радиус, он равен гипотенузе треугольника с катетами 3 и 5 см
R = OP = ON = OM = √(5^2 + 3^2) = √(25 + 9) = √34 см ~~ 5,8 см
ответ немного смущает, но видимо это "модификация" преподавателя, для защиты от списывания, наверное цифры у Сканави были другие, если конечно я не ошибся в "расчётах"
ответ: радиус окружности равен √34 см