в параллелограмме ABCD диагонали пересекаются в точке O докажите Докажите что Докажите что треугольник fkl вершинами которого являются середины отрезков oa AB AC и AD параллелограмма
А) BD ищется из треугольника ABD по теореме Пифагора: BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см. Треугольник CDH - прямоугольный с прямым углом CHD. Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам. Значит, треугольник CDH - равнобедренный. CH = DH = 5 см. Ищем CD по теореме Пифагора: CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC. AH = AD - DH = 12 - 5 = 7 см. Ищем AC по теореме Пифагора: AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
1 ответ: Катет лежащий против угла в 30 градусов в прямоугольном треугольнике равен половине гипотенузы, т. е. один катет на сразу становится известен =3.5, а второй катет мы находим из теоремы пифагора, квадрат гипотенузы= сумме квадратов катетов.)) 2 ответ: По теореме: катет, лежащий против угла в 30 град. равен половине гипотенузы. Отсюда меньший катет=3,5 см. Квадрат гипотенузы равен сумме квадратов катетов, т. е. второй катет находится по формуле корень из 7^2-3,5^2 отсюда больший катет равен 6,06 см. Площадь треугольника =1/2*3,5*6.06=10,6 см^2
BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см.
Треугольник CDH - прямоугольный с прямым углом CHD.
Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам.
Значит, треугольник CDH - равнобедренный. CH = DH = 5 см.
Ищем CD по теореме Пифагора:
CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC.
AH = AD - DH = 12 - 5 = 7 см.
Ищем AC по теореме Пифагора:
AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
2 ответ: По теореме: катет, лежащий против угла в 30 град. равен половине гипотенузы. Отсюда меньший катет=3,5 см. Квадрат гипотенузы равен сумме квадратов катетов, т. е. второй катет находится по формуле корень из 7^2-3,5^2 отсюда больший катет равен 6,06 см. Площадь треугольника =1/2*3,5*6.06=10,6 см^2