В параллелограмме ABCD из вершины С опущен перпендикуляр СЕ на сторону AD. Точка М - середина стороны АВ. Найдите угол ВМЕ, если известно, что CD = 2AD и угол AEM = 50°
2) Маючи сторону і одну діагональ знайдемо іншу діагональ і потім знайдемо площу ромба. Діагоналі пересікаються під прямим кутом, тому легко знайдемо половинку діагоналі , а потім і цілу діагональ.Назвемо її ВД і вона =16 см , S ромба через діагоналі буде:АС*ВД/2=12*16/2=96 см²
3)S=а+в/2*h 2S=(a+b)*h a+b=2S/h=2*40/4=20 cm
4)Маємо прямокутню трапецію, маємо периметр, маємо площу, а також маємо меншу бічну сторону, яка також буде висотою прямокутньої трапеції, нам треба знайти іншу бічну сторону трапеції.
Знайдемо суму основ трапеції (а+в) S=а+в/2*h а+в=2S/h=2*27/3=18 см.
Тепер знайдемо невідому бічну сторону трапеції: Р-периметр=26 см
26-(3+18)=5 см. Друга бічна сторона трапеції =5 см
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Объяснение:
1) S=a+b/2*h=8+6/2*5=35(cm²)
2) Маючи сторону і одну діагональ знайдемо іншу діагональ і потім знайдемо площу ромба. Діагоналі пересікаються під прямим кутом, тому легко знайдемо половинку діагоналі , а потім і цілу діагональ.Назвемо її ВД і вона =16 см , S ромба через діагоналі буде:АС*ВД/2=12*16/2=96 см²
3)S=а+в/2*h 2S=(a+b)*h a+b=2S/h=2*40/4=20 cm
4)Маємо прямокутню трапецію, маємо периметр, маємо площу, а також маємо меншу бічну сторону, яка також буде висотою прямокутньої трапеції, нам треба знайти іншу бічну сторону трапеції.
Знайдемо суму основ трапеції (а+в) S=а+в/2*h а+в=2S/h=2*27/3=18 см.
Тепер знайдемо невідому бічну сторону трапеції: Р-периметр=26 см
26-(3+18)=5 см. Друга бічна сторона трапеції =5 см
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.