В параллелограмме ABCD стороны AB = 14 см и AD = 8 см. BH и BK – высоты параллелограмма, проведенные к сторонам AD и DC соответственно. Если угол между сторонами равен 30°, то найди площадь и высоты параллелограмма. 60 см2 9 см 56 см2 4 см 8 см 7 см ответ:
S =
BH =
BK =
ЭТО ИЗ ОНЛАЙН МЕКТЕП
Теорема
Две прямые, параллельные третьей, параллельны.
Доказательство.
Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана.
Теорема
Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
Доказательство.
Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают.
Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана.
На основании теоремы доказывается:
Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.
Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
1)
Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1
2)
Если требуется найти синус угла между отрезками, то выразив
KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4
Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то
(AC)/sinx =√(BD^2+AC^2)/(2cos(x/2))
откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит
sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))