В параллелограмме ABCD точка K- середина BC, D- середина CP, M лежит на отрезке ВР и BM: MP = 1:3. Разложите по век- торам AB и AD следующие векторы: а) DB; б) KA; в) BP; г) АМ.
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
1) хорда ba делит окружность на две дуги,одна из которых равна 126,диаметр ab делит окружность на две дуги,одна из которых равна 180,а другая x,наглядно видно,что получается три дуги - одна в 126 градусов,другая - в 180,третья - в x.сумма дуг окружностей равна 360 градусам,т.е 360-180-126=x=54,дуга ac равна 54,а вписанный угол abc равен,как известно,половине дуги,на которую он опирается,т.е угол abc=27. 2) хорда ab делит окружность на две дуги,одна равна 110,а другая - 250,вот эта большая дуга,равная 250,делится точкой c на две дуги - 12x и 13x (всегда можно записать пропорциональность в таком виде,например, в отношении 1/2 - это x и 2x) , т.е 25x=250,x=10,вписанный угол cab опирается на "дугу 13x",т.е на дугу,равную 130 градусам,т.е он равен 65 градусам.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°