В параллелограмме стороны равны 4 см и 6 см. Высота, проведённая к меньшей стороне, равна 15 см. Найдите высоту, проведённую к большей стороне параллелограмма.
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
x + 3y + 3 = 0
Объяснение:
Стороны:
5x - y - 1 = 0
x - y - 9 = 0
Точка пересечения высот: H(1; -2).
Уравнение высоты, перпендикулярной к прямой 5x - y - 1 = 0:
h1 : (x - 1) + 5(y + 2) = 0; x + 5y + 9 = 0
Вершина, из которой выходит эта высота, есть точка пересечения высоты и стороны x - y - 9 = 0:
{ x + 5y + 9 = 0
{ x - y - 9 = 0
Решаем подстановкой:
{ y = x - 9
{ x + 5(x-9) + 9 = 0
6x - 36 = 0; x = 6; y = -3. A(6; -3).
Уравнение высоты, перпендикулярной к прямой x - y - 9 = 0:
h2 : (x - 1) + (y + 2) = 0; x + y + 1 = 0
Точно также находим точку пересечения высоты и стороны 5x - y - 1 = 0:
{ x + y + 1 = 0
{ 5x - y - 1 = 0
Решаем тоже подстановкой:
{ y = 5x - 1
{ x + 5x - 1 + 1 = 0
6x = 0; x = 0; y = -1. B(0; -1)
Теперь строим уравнение прямой по двум точкам:
(AB) : (x-6)/(0-6) = (y+3)/(-1+3)
(x-6)/(-6) = (y+3)/2
2(x-6) = -6(y+3)
2x - 12 = -6y - 18
2x + 6y + 6 = 0
x + 3y + 3 = 0