В парке при музее решили разбить клумбу в форме четырёхугольника. Две стороны этой клумбы (AD и BC), если бы можно было продлить их на бесконечную длину, никогда б не пересеклись. Другие две (AB и CD), если бы можно было продлить их на бесконечную длину, сошлись бы когда-нибудь одной точке. Когда попарно соединяли несмежные вершины этой клумбы дорожками из ракушек, то выяснилось, что длина этих дорожек вышла абсолютно одинаковой.
Плоскости пересекаются по прямым линиям. Две параллельные плоскости пересекаются третьей по параллельным прямым.
Нам даны три точки секущей плоскости, пересекающей куб: E, F и G, расположенные на ребрах АВ, AD и DD1 соответственно.
Прямая EF, принадлежащая секущей плоскости и грани АВСD куба пересекает грань куба DD1C1C в точке Q, а грань куба AA1B1B в точке R.
Проведя прямую QG до пересечения с ребром D1C1, получим точку сечения Н.
Теперь можно провести НI параллельно EF и IK параллельно GF => получим все точки сечения.
Но можно построить недостающие точки P и S (построение понятно из рисунка) и провести прямые SI (через Н) и РК (через Е). Получим то же самое сечение, которое в силу симметричности точек является правильным шестиугольником.
Не могут, докажем это. Допустим, что они пересекаются в точке О. Через точки К, О, Р можно по аксиоме провести плоскость и притом только одну. Пусть это плоскость alpha. По аксиоме: если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости. Для прямой КМ: K принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой KM, значит две точки прямой КМ принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой KM, в частности, точка M принадлежит alpha. Для прямой PT: P принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой PT, значит две точки прямой PT принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой PT, в частности, точка T принадлежит alpha. В итоге получили, что точки K,M,P,T принадлежат плоскости alpha, получаем противоречие с условием. Значит прямые KM и PT не пересекаются.
Сечение - правильный шестиугольник.
Объяснение:
Плоскости пересекаются по прямым линиям. Две параллельные плоскости пересекаются третьей по параллельным прямым.
Нам даны три точки секущей плоскости, пересекающей куб: E, F и G, расположенные на ребрах АВ, AD и DD1 соответственно.
Прямая EF, принадлежащая секущей плоскости и грани АВСD куба пересекает грань куба DD1C1C в точке Q, а грань куба AA1B1B в точке R.
Проведя прямую QG до пересечения с ребром D1C1, получим точку сечения Н.
Теперь можно провести НI параллельно EF и IK параллельно GF => получим все точки сечения.
Но можно построить недостающие точки P и S (построение понятно из рисунка) и провести прямые SI (через Н) и РК (через Е). Получим то же самое сечение, которое в силу симметричности точек является правильным шестиугольником.
Допустим, что они пересекаются в точке О.
Через точки К, О, Р можно по аксиоме провести плоскость и притом только одну. Пусть это плоскость alpha.
По аксиоме: если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости.
Для прямой КМ: K принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой KM, значит две точки прямой КМ принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой KM, в частности, точка M принадлежит alpha.
Для прямой PT: P принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой PT, значит две точки прямой PT принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой PT, в частности, точка T принадлежит alpha.
В итоге получили, что точки K,M,P,T принадлежат плоскости alpha, получаем противоречие с условием.
Значит прямые KM и PT не пересекаются.