В плоскости альфа прямые a и b, не имеющие общих точек. Через точку А прямой а проведена плоскость бета перпендикулярно этой прямой. Определите, принадлежит ли плоскость бета середина отрезка AB , если точка B лежит на прямой b. Если принадлежит, то изобразите её на чертеже.
Т.к. ∠ АОВ=∠ВОС=...=∠GОА=2π/7, то площадь одного из семи треугольников АОВ, ВОС,СОD, ...GОА может быть найдена как
0.5R²*sin2π/7, тогда площадь правильного семиугольника равна
3.5R²*sin2π/7=70⇒площадь искомой фигуры, состоящей из трех равных треугольников найдем так (3/7)(70)=30/см²/
да. еще раз. есть формула площади для треугольника.
это - половина произведения двух сторон на синус угла между ними. а 2π/7 - это центральный угол, а заодно и угол между данными сторонами. Нам нужно только увидеть. что таких треугольников равных семь, у правильного семиугольника, а нас интесуют только три из семи, т.е. 3/7 от 70
Т.к. ∠ АОВ=∠ВОС=...=∠GОА=2π/7, то площадь одного из семи треугольников АОВ, ВОС,СОD, ...GОА может быть найдена как
0.5R²*sin2π/7, тогда площадь правильного семиугольника равна
3.5R²*sin2π/7=70⇒площадь искомой фигуры, состоящей из трех равных треугольников найдем так (3/7)(70)=30/см²/
да. еще раз. есть формула площади для треугольника.
это - половина произведения двух сторон на синус угла между ними. а 2π/7 - это центральный угол, а заодно и угол между данными сторонами. Нам нужно только увидеть. что таких треугольников равных семь, у правильного семиугольника, а нас интесуют только три из семи, т.е. 3/7 от 70