В подобных треугольниках АВС и PMN сторона АВ = 10 см. Площадь треугольника АВС равна 20 см2, а площадь треугольника PMN равна 180 см2. Найди сторону PM.
Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
SABCD - пирамида, ABCD - прямоугольник, AB = 8 см, BC = 6 см, SB = 7 см.
Найти:
Высоту пирамиды ( SH ) - ?
Решение:
Т.к. ABCD - прямоугольник, то AB = DC = 8 см, и BC = AD = 6 см.
Рассмотрим △BAD - прямоугольный ( ∠B = 90° ).
По теореме Пифагора:
BD² = BA² + AD²
BD² = 64 + 36 = 100
BD = 10 см ( диагональ прямоугольника )
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам, значит:
AH = HC = DH = HB = 5 см.
Рассмотрим △SHC - прямоугольный ( ∠SHC = 90° )
По теореме Пифагора:
SC² = SH² + HC²
Отсюда:
SH² = SC² - HC²
SH² = 49 - 25 = 24
см.
ответ: см.