В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Лизатян4
Лизатян4
14.06.2022 09:01 •  Геометрия

В подобных треугольниках DOM и D1O1M1 известно, что площадь треугольника D1O1M1 больше площади треугольника DOM на 78 и D101 : DO = 8 : 5. Найти площадь треугольника DOM.

Показать ответ
Ответ:
zlatasidorowa
zlatasidorowa
20.12.2023 20:47
Добрый день! Давайте решим эту задачу.

В задаче нам дано два треугольника: DOM и D1O1M1. Мы знаем, что площадь треугольника D1O1M1 больше площади треугольника DOM на 78.

Для начала, давайте обозначим площадь треугольника DOM как S, а площадь треугольника D1O1M1 как S1.

Мы также знаем, что отношение сторон D101 к DO равно 8 к 5. Это означает, что D101 больше DO в 8 раз, так как у нас здесь прямоугольный треугольник.

Теперь мы можем записать уравнение для площадей треугольников:

S1 = S + 78

Мы знаем, что площадь треугольника равна половине произведения длины основания на высоту. Давайте обозначим основание треугольника DOM как b, а высоту как h.

Тогда формула для площади треугольника DOM будет:

S = (b * h) / 2

Давайте поместим это значение в наше уравнение и решим его.

S1 = (b * h) / 2 + 78

Теперь нам нужно использовать данное нам отношение D101 к DO. Мы знаем, что D101 больше DO в 8 раз, поэтому можем записать:

D101 = 8 * DO

Теперь можем записать D101 в виде D101 = DO + 8 * DO = 9 * DO.

Также, мы знаем, что D101 равно основанию треугольника D1O1M1, а DO равно основанию треугольника DOM.

Тогда можем написать уравнение:

b1 = 9 * b

Теперь у нас есть два уравнения:
S1 = (b * h) / 2 + 78
b1 = 9 * b

Но нам нужно найти площадь треугольника DOM, а не D1O1M1. Поэтому мы можем выразить b и h через b1 и подставить их обратно в уравнение для площади треугольника DOM.

Для этого давайте разделим второе уравнение на 9:

b = b1 / 9

Теперь можем подставить это значение для b в первом уравнении:

S1 = ((b1 / 9) * h) / 2 + 78

Теперь нам нужно выразить h через b1. Для этого можем умножить оба выражения первого уравнения на 2:

2 * S1 = (b1 * h) / 9 + 156

Теперь можно переписать это уравнение:

(b1 * h) / 9 = 2 * S1 - 156

А теперь выразим h через b1:

h = (9 * (2 * S1 - 156)) / b1

Теперь у нас есть выражения для b и h через b1. Мы можем подставить их в уравнение для площади треугольника DOM:

S = ((b * h) / 2)

S = (((b1 / 9) * (9 * (2 * S1 - 156)) / b1) / 2)

Мы видим, что b1 и b1 в числителе и знаменателе сокращаются:

S = ((9 * (2 * S1 - 156)) / 2)

S = 9 * (S1 - 78)

И наконец, мы можем подставить значение S1, которое мы знаем:

S = 9 * (S + 78 - 78)

S = 9 * S

Теперь давайте решим это уравнение:

9 * S = S

Вычитаем S из обеих сторон:

8 * S = 0

Теперь мы можем поделить обе стороны на 8:

S = 0

Итак, получается, что площадь треугольника DOM равна 0.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота