Пусть PH –высота треугольной пирамиды PABC, ABC – прямоугольный треугольник, в котором C = 90o, AC = BC = 8 . Поскольку PH – перпендикуляр к плоскости ABC, отрезки AH, BH и CH – проекции наклонных AP, BP и CP на плоскость ABC . По условию AP = BP = CP = 9.
Прямоугольные треугольники DAH, DBH и DCH равны по катету и гипотенузе, поэтому AH = BH = CH и H – центр окружности, описанной около треугольника ABC, а т. к. этот треугольник прямоугольный, то H – середина гипотенузы AB . Далее находим: PH = корень квадратный из 44+5 = 7.
Прямой называется призма, боковое ребро которой перпендикулярно плоскости основания. Все боковые грани прямой призмы прямоугольники.Основание призмы тоже прямоугольник (дано). а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей. б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору: bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору: bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5. Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5. ответ: тангенс искомого угла равен 0,5.
AP = BP = CP = 9.
Прямоугольные треугольники DAH, DBH и DCH равны по катету и гипотенузе, поэтому AH = BH = CH и H – центр окружности, описанной около треугольника ABC, а т. к. этот треугольник прямоугольный, то H – середина гипотенузы AB . Далее находим:
PH = корень квадратный из 44+5 = 7.
MABCp = SΔ ABC· pH = CP · BC· AC· DH =
= 8·2= 16
а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей.
б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору:
bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору:
bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5.
Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5.
ответ: тангенс искомого угла равен 0,5.