В правильном тетраэдре PABC с ребром 1 точки M и K - середины ребер соответственно BP и CP, точка O - центр основания ABC. Найдите расстояние между прямыми MK и OP
1)24-6=18 см = а + в, отсюда в=18-а=АВ медиана в равнобедренном треугольнике является и высотой ,значит треугольник АВД-прямоугольный следует ,что АВ=в= 18-а является гипотенузой АВД, АД=а -Ккатет АД исходя из свойств гипотенузы и катета,получаем,что 2 2 2 (18- а) - а = 6 раскроем скобки 2 2 324- 36 а + а - а =36
квадраты а сокращаются остается 324-36 а=36 отсюда убираем минусы так как с обоих сторон остается 36 а= 324-36 36а= 288 а=288 : 36 а= 8 см 18- 8 =10 см= АВ=ВС АС= 8+8=16 так как медиана делит пополам периметр АВС=10+10+16=36 см
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
медиана в равнобедренном треугольнике является и высотой ,значит треугольник АВД-прямоугольный
следует ,что АВ=в= 18-а является гипотенузой АВД, АД=а -Ккатет АД
исходя из свойств гипотенузы и катета,получаем,что
2 2 2
(18- а) - а = 6
раскроем скобки
2 2
324- 36 а + а - а =36
квадраты а сокращаются
остается 324-36 а=36
отсюда убираем минусы так как с обоих сторон
остается 36 а= 324-36
36а= 288
а=288 : 36
а= 8 см
18- 8 =10 см= АВ=ВС
АС= 8+8=16 так как медиана делит пополам
периметр АВС=10+10+16=36 см
Тогда сторона основания призмы (квадрата)
АD=DB1*Sinα=а*Sinα. Диагональ основания
ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α).
Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vп=64*(1/4)*√2/2=8√2.
Объем описанного цилиндра равен So*h, где So=πR².
R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2).
Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2.
ответ: Vп=8√2. Vц=π*4√2.