В правильном треугольнике АВС точки А1, В1, С1 - середины сторон ВС, АС, АВ соответственно. В какую фигуру при повороте вокруг центра правильного треугольника на 120° по часовой стрелке переходит отрезок В1С1
Пусть х° первая дуга, тогда 2х°-вторая, 3х°-третья.
Вся окружность 360°. Поэтому
х+2х+3х=360
6х=360
х=360:6
х=60
60° -первая дуга (U AB)
2*60°=120° - вторая дуга (U BC)
3*60°=180° - третья дуга (U AC)
Углы ∆АВС - вписанные. Вписанный угол = половине дуги, на которую опирается.
L A= ½U BC
L A=½*120°=60°
L B=½U AC
L B= ½*180°=90°
L C=½*U AB
L C=½*60°=30°
ответ: 60°, 90° и 30°
2)120градусов
3)Радиус в точке касания перпендикулярен касательной. Следовательно, треугольник ОВА прямоугольный с равными острыми углами (так как сумма острых углов прямоугольного треугольника равна 90°: 45°+45°=90°).
Таким образом, треугольник ОВА равнобедренный и ОВ=АВ=5см.
ОВ - это радиус окружности.
ответ: R=5см.
4)30 градусов.
Дело в том, что "половина диаметра" - это всего-навсего радиус, если соединить концы хорды с центром окружности, получим равносторонний треугольник, углы которого по 60 градусов, ну а касательная перпендикулярна радиусу(стороне этого треугольника), поэтому искомый угол будет 90-60=30.
Нарисуй, всё сразу станет понятно.
Да, извини, решение привёл на русском языке, просто большему количеству людей оно будет доступно.
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
1)Найдем сначала градусные меры дуг из отношения:
Пусть х° первая дуга, тогда 2х°-вторая, 3х°-третья.
Вся окружность 360°. Поэтому
х+2х+3х=360
6х=360
х=360:6
х=60
60° -первая дуга (U AB)
2*60°=120° - вторая дуга (U BC)
3*60°=180° - третья дуга (U AC)
Углы ∆АВС - вписанные. Вписанный угол = половине дуги, на которую опирается.
L A= ½U BC
L A=½*120°=60°
L B=½U AC
L B= ½*180°=90°
L C=½*U AB
L C=½*60°=30°
ответ: 60°, 90° и 30°
2)120градусов
3)Радиус в точке касания перпендикулярен касательной. Следовательно, треугольник ОВА прямоугольный с равными острыми углами (так как сумма острых углов прямоугольного треугольника равна 90°: 45°+45°=90°).
Таким образом, треугольник ОВА равнобедренный и ОВ=АВ=5см.
ОВ - это радиус окружности.
ответ: R=5см.
4)30 градусов.
Дело в том, что "половина диаметра" - это всего-навсего радиус, если соединить концы хорды с центром окружности, получим равносторонний треугольник, углы которого по 60 градусов, ну а касательная перпендикулярна радиусу(стороне этого треугольника), поэтому искомый угол будет 90-60=30.
Нарисуй, всё сразу станет понятно.
Да, извини, решение привёл на русском языке, просто большему количеству людей оно будет доступно.
Объяснение: