В правильной четырехугольной пирамиде MABCD с вершиной М величина угла между смежными боковыми гранями равна arccos 1/18 и длина бокового ребра равна 1. Точка К - середина ребра ВМ. Найти: а) скалярное произведение векторов АМ и АВ; б) длина вектора АК я гуманитарий, мне ничего здесь не понятно
28 см²
Объяснение:
Дано:
Прямоугольник ABCD (см. рисунок)
AK – биссектриса:
∠KAB = ∠KAD, K∈BC
BK=3,5 см
KC=4,5 см
Найти: площадь прямоугольника S(ABCD).
Решение: У прямоугольника ABCD все углы равны, поэтому ∠B=∠A=90°.
Так как AK – биссектриса, то ∠KAB=90°:2=45°.
Следовательно, как внутренний угол треугольника
∠BKA=180°–∠B–∠KAB= 180°–90°–45°=45°.
Тогда, так как углы при основании треугольника AKB равные, то треугольник AKB равнобедренный: AB=BK=3,5 см.
Имеем: BC=BK+KC=3,5 см+4,5 см=8 см.
Теперь можем определить площадь прямоугольника
S(ABCD)=AB•BC= 3,5 см • 8 см = 28 см².
По условию секущая плоскость параллельна плоскости КМТ.
Точки А и В лежат в плоскости грани МРТ и являются серединами сторон МР и ТР треугольника МТР.
Следваоетльно, прямая АВ параллельна МТ.
Из т.В проведем прямую ВС параллельно КТ.
ВС - средняя линия ∆ КТР.
С- середина КР, АС - средняя линия ∆ МКР и параллельна МК.
Две пересекающиеся прямые АВ и МС плоскости АВС параллельны двум пересекающимся прямым МТ и ТК плоскости МКТ. Это признак параллельности плоскостей, следовательно, АВС - искомое сечение.