В правильной четырехугольной призме через диагональ основания и середину противолежащего ей бокового ребра проведена плоскость под углом 60 грудусов к плоскости основания. Найдите площадь сечения и объем призмы, если сторона основания равна 2√2 см.
Точка К не лежит в плоскости трапеции АВСD с основаниями АВ и CD. .Через середины отрезков КА и КВ проведена прямая FE
1) Определите вид четырехугольника DCEF, если АВ:DC=2:1.
2) Вычислите периметр четырехугольника DCEF, если АВ=12 см, ЕС=8 см.
* * *
1) В ∆ АВК отрезок FE соединяет середины сторон AК и BК => FE- средняя линия треугольника и по свойству таковой EF║АВ. Если одна из двух параллельных прямых параллельна третьей прямой, то и вторая прямая также параллельна третьей прямой. . => CD||FE.
По условию СD=1/2 AB, средняя линия FE=1/2 АВ => FE=CD, обе лежат на параллеьных прямых ( основаниях трапеции, параллельных по определению).
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм. Противоположные стороны параллелограмма равны. ВА=СЕ=8 см
2) Если АВ=12 см, CD=FE=12:2=6 см, Р(ABCD)=2•(6+8)=28 см
Обозначим вершины треугольника А В С, высоту ВН. ВН делит ∆АВС на 2 равных прямоугольных треугольника, в которых высота и половины являются катетами, а боковые стороны - гипотенузы, и ещё ВН является ещё биссектрисой и медианой, так как ∆АВС равнобедренный, поэтому <АВН=<СВН, АН=НС=4√3÷2=2√3см. Рассмотрим∆АВН и найдём <А, используя косинус угла. Косинус - это отношение прилежащего к углу катета к гипотенузе, поэтому
Так как <А=30°, то ВН=1/2 АВ, поскольку катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому ВН=АВ÷2=4÷2=2см
Точка К не лежит в плоскости трапеции АВСD с основаниями АВ и CD. .Через середины отрезков КА и КВ проведена прямая FE
1) Определите вид четырехугольника DCEF, если АВ:DC=2:1.
2) Вычислите периметр четырехугольника DCEF, если АВ=12 см, ЕС=8 см.
* * *
1) В ∆ АВК отрезок FE соединяет середины сторон AК и BК => FE- средняя линия треугольника и по свойству таковой EF║АВ. Если одна из двух параллельных прямых параллельна третьей прямой, то и вторая прямая также параллельна третьей прямой. . => CD||FE.
По условию СD=1/2 AB, средняя линия FE=1/2 АВ => FE=CD, обе лежат на параллеьных прямых ( основаниях трапеции, параллельных по определению).
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм. Противоположные стороны параллелограмма равны. ВА=СЕ=8 см
2) Если АВ=12 см, CD=FE=12:2=6 см, Р(ABCD)=2•(6+8)=28 см
ВН=2см
Объяснение:
Обозначим вершины треугольника А В С, высоту ВН. ВН делит ∆АВС на 2 равных прямоугольных треугольника, в которых высота и половины являются катетами, а боковые стороны - гипотенузы, и ещё ВН является ещё биссектрисой и медианой, так как ∆АВС равнобедренный, поэтому <АВН=<СВН, АН=НС=4√3÷2=2√3см. Рассмотрим∆АВН и найдём <А, используя косинус угла. Косинус - это отношение прилежащего к углу катета к гипотенузе, поэтому
Так как <А=30°, то ВН=1/2 АВ, поскольку катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому ВН=АВ÷2=4÷2=2см