в правильной четырехугольной призме сторона основания равна b; сечение проведенное через противоположные стороны оснрванийисостовляет с плоскостью основания угол ф найдите площадь боковой поверхности цилиндра основания которого описаны околооснований данной призмы
Примем длину ребра куба равной 70 (для кратности между 14 и 5).
Так как точки М и N, принадлежат плоскости АВС, которая параллельна заданной плоскости А1В1С1, то угол между плоскостями MNK и A1B1C1 равен углу между плоскостями MNK и ABC.
Помести куб в систему координат точкой А в начало,ребром АД по оси Ох, ребром АВ по оси Оу.
В соответствии с заданием определим координаты точек.
А(0; 0; 0), В(0; 70; 0), С(70; 70; 0). Уравнение АВС: z = 0.
M(35; 0; 0), N(0; 5; 0), K(0; 0; 14).
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в данное выражение и сократив на 35, получаем уравнение плоскости MNК: 2x + 14y + 5z - 70 = 0.
Угол между плоскостями определяем через его косинус:
cos α = |A₁·A₂ + B₁·B₂ + C₁·C₂|
√(A₁² + B₁² + C₁²)*√(A₂² + B₂² + C₂²) = 1/3.
α = arc cos(1/3) = 1,23096 радиан или 70,529 градуса.
Пусть P - произвольная точка
PK, PL, PM - перпендикуляры к сторонам треугольника ABC
По теореме Пифагора для треугольников PAK и PBK
PK^2 =PA^2 -AK^2 =PB^2 -BK^2 <=> PA^2 -PB^2 =AK^2 -BK^2
(Доказали, что разность квадратов наклонных равна разности квадратов их проекций.)
PB^2 -PC^2 =BL^2 -CL^2
PC^2 -PA^2 =CM^2 -AM^2
Сложим:
AK^2 -BK^2 +BL^2 -CL^2 +CM^2 -AM^2 =0 <=>
AK^2 +BL^2 +CM^2 =CL^2 +BK^2 +AM^2
Если перпендикуляры к сторонам пересекаются в одной точке, то выполняется это равенство.
(Обратное док-во: разность квадратов наклонных для двух пересекающихся перпендикуляров подставляем в доказанное равенство - получаем разность квадратов наклонных для третьего отрезка - тогда он также является перпендикуляром.)
Проверим данные из условия
AK=BK=6, BL=AM=1
CM= {9, 11}
CL= {7, 9}
CM^2 =CL^2 в одном случае:
точка M на стороне, точка L на продолжении стороны.