Полуплоскость в математике — множество точек плоскости, лежащих по одну сторону от некоторой прямой на этой плоскости. Координаты точек полуплоскости удовлетворяют неравенству: Ах + By + С > 0, где А, В, С — некоторые постоянные, причём А и В одновременно не равны нулю. Если сама прямая Ax + By + С = 0 (граница полуплоскости) причисляется к этой полуплоскости, то такую полуплоскость называют замкнутой. На комплексной плоскости z = х + iy рассматриваются: верхняя полуплоскость у = Im z > 0.
Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.