В правильной треугольной пирамиде SABC все рёбра равны. Точки M и N - середины рёбер SA и SC. а) В каком отношении плоскость BMN делит высоту SH пирамиды? б) Найдите угол между плоскостью BMN и основанием пирамиды, если рёбра пирамиды равны 12.
Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
Радиус вписанной окружности в ромб равен высоте, проведенной из центра ромба на его сторону. Пусть сторона ромба с две полудиагонали образуют прямоугольный треугольник АВС с катетами АС и ВС. Найдём сторону ромба (это АС). АС = √(144² + 42²) = √(20736 + 1764) = √22500 = 150. Площадь треугольника можно записать двумя разными как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту h. То есть: h*150 = 42*144. Отсюда искомая величина равна: h = 42*144/150 = 6048 / 150 = 1008 / 25 = 40,32.
Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
АВ+АС+ВС+2*ДА=27 ,
Р( АВС)+2*ДА=27 ,
18+2*ДА=25 ,
2*ДА=9 ,
ДА=4,5 см .
Пусть сторона ромба с две полудиагонали образуют прямоугольный треугольник АВС с катетами АС и ВС.
Найдём сторону ромба (это АС).
АС = √(144² + 42²) = √(20736 + 1764) = √22500 = 150.
Площадь треугольника можно записать двумя разными как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту h.
То есть:
h*150 = 42*144.
Отсюда искомая величина равна:
h = 42*144/150 = 6048 / 150 = 1008 / 25 = 40,32.