А)Отрезки ОА и ОВ называются радиусами. Их длина равна 3 см.
Б)АВ является радиусом и его длина равна 2R=2×3=6 см.
2.
Если расстояние между центрами двух окружностей больше суммы их радиусов, то окружности не имеют общих точек.
R(Центр K)+R(Центр М)<KM.
Запишем 1 см и 5 мм как 1,5 см.
2+1,5<5; 3,5<5.
ответ: Окружности не имеют общих точек.
3. Радиус равен половине Диаметра.
Запишем 3 см и 8 мм как 3,8 см.
R=½D=½×3,8=1,9 см или же 1 см 9 мм.
4. Диаметр окружности - отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.
5. Круг - часть плоскости, лежащая внутри окружности.
Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
Надеюсь, что все чертежи сможете выполнить сами.
1.
А)Отрезки ОА и ОВ называются радиусами. Их длина равна 3 см.
Б)АВ является радиусом и его длина равна 2R=2×3=6 см.
2.
Если расстояние между центрами двух окружностей больше суммы их радиусов, то окружности не имеют общих точек.
R(Центр K)+R(Центр М)<KM.
Запишем 1 см и 5 мм как 1,5 см.
2+1,5<5; 3,5<5.
ответ: Окружности не имеют общих точек.
3. Радиус равен половине Диаметра.
Запишем 3 см и 8 мм как 3,8 см.
R=½D=½×3,8=1,9 см или же 1 см 9 мм.
4. Диаметр окружности - отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.
5. Круг - часть плоскости, лежащая внутри окружности.
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см