Боковые грани правильной усеченной треугольной пирамиды - это трапеции с основаниями 60 см. и 120 см. Найдем высоту трапеции.
Рассмотрим вид сверху на пирамиду.
Треугольник АВС имеет угол В - прямой, угол С = 30° и сторону ВС = 30 см.
АВ = 30 × tg 30° = 17,32 см.
Если посмотреть на пирамиду сбоку, то высота пирамиды и отрезок АВ - это катеты треугольника, гипотенузой которого является высота трапеции ( боковой грани усеченной пирамиды ).
Н = sqrt ( 10^2 × 17,32^2 ) = sqrt 400 = 20 см.
Вычислим площадь боковой грани
Sтр = ( 60 + 120 ) / 2 × 20 = 1800 см^2.
Площадь боковой поверхности нашей пирамиды равна трем площадям трапеции.
Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Для нахождения боковой поверхности усечённой пирамиды надо:
S (усеч пирамиды) = S (трап. АА1С1С)*3
S (трап. АА1С1С) =(А1С1+АС)/2*НН1
В треугольнике АВС т.О - центр вписанной окружности и по свойству медиан делит ВН в отношении 2:1, считая от вершины
Відповідь:
5400 см^2.
Пояснення:
Боковые грани правильной усеченной треугольной пирамиды - это трапеции с основаниями 60 см. и 120 см. Найдем высоту трапеции.
Рассмотрим вид сверху на пирамиду.
Треугольник АВС имеет угол В - прямой, угол С = 30° и сторону ВС = 30 см.
АВ = 30 × tg 30° = 17,32 см.
Если посмотреть на пирамиду сбоку, то высота пирамиды и отрезок АВ - это катеты треугольника, гипотенузой которого является высота трапеции ( боковой грани усеченной пирамиды ).
Н = sqrt ( 10^2 × 17,32^2 ) = sqrt 400 = 20 см.
Вычислим площадь боковой грани
Sтр = ( 60 + 120 ) / 2 × 20 = 1800 см^2.
Площадь боковой поверхности нашей пирамиды равна трем площадям трапеции.
S = 3 × Sтр = 3 × 1800 = 5400 см^2.
ответ: 5400см²
Объяснение:
Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Для нахождения боковой поверхности усечённой пирамиды надо:
S (усеч пирамиды) = S (трап. АА1С1С)*3
S (трап. АА1С1С) =(А1С1+АС)/2*НН1
В треугольнике АВС т.О - центр вписанной окружности и по свойству медиан делит ВН в отношении 2:1, считая от вершины
см фото