ів Прямокутний трикутник ABC з гіпотенузою AB рухається у прямому куті з вершиною O так, що вершина A ковзає по одній, а вершина B – по іншій стороні цього кута. Доведіть, що при цьому вершина C рухається вздовж деякого відрізка. ів
Номер 1 Рассмотрим треугольник AOC и треугольник BOD: угол AOC равен углу BOD(как вертикальные) AO=OB и CO=OD(по условию,т.к. точка серединой является O) значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними) значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC: по условию угол BDA равен углу ADC сторона AD-общая и по условию угол BAD=углу DAC(т.к. AD биссектриса) Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
Рассмотрим треугольник AOC и треугольник BOD:
угол AOC равен углу BOD(как вертикальные)
AO=OB и CO=OD(по условию,т.к. точка серединой является O)
значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними)
значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC:
по условию угол BDA равен углу ADC
сторона AD-общая
и по условию угол BAD=углу DAC(т.к. AD биссектриса)
Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними)
значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
#1
Р = 24см
S = ?см^2
Р = а × 4 => а = Р : 4
а = 24 : 4 = 6см
S = а × а
S = 6 × 6 = 36см^2
#2
а□1 = 5см
S□1 = ?см^2 <|
а□2 = 5см × 2 = 10см |
S□2 = ?см^2, в ? раз больше, чем __|
Найдем площадь первого квадрата.
S□1 = 5 × 5 = 25см^2
Теперь площадь второго квадата.
S□2 = 10 × 10 = 100см^2
Теперь нужно узнать "во сколько раз площадь первого квадрата, больше площади второго квадрата" то есть, нужно разделить.
100 : 25 = 4 То есть в 4 раза больше.
#3
АВ
| |
| |
D||С
Сторона ОА =11см... ОА нету...
неправильное условие...
ответ: Ø