Середины сторон четырехугольника являются вершинами параллелограмма (теорема Вариньона). Стороны параллелограмма Вариньона параллельны диагоналям четырехугольника и равны их половинам (т.к. являются средними линиями в треугольниках, образованных сторонами и диагоналями).
Диагонали равнобедренной трапеции равны, следовательно стороны параллелограмма Вариньона равны и он является ромбом.
MN - средняя линия в ABC => MN||AC, MN=AC/2. Аналогично LK||AC, LK=AC/2.
MN||LK, MN=LK => MNKL - параллелограмм (противоположные стороны параллельны и равны).
ᐃ АВС ~ ᐃ MСN по свойству углов при пересечении параллельных прямых секущей и общему углу С.
Отношение периметров подобных треугольников равно отношению его сторон. Р ᐃ MСN: Р ᐃ АВС=18:12=1,5
MN:АВ=1,5 3:АВ=1,5 АВ=3:1,5=2 см ( вообще-то не пригодится) ---- Расстояние от вершины треугольника до точки касания вневписанной окружности с продолжением его боковой стороны равно его полупериметру :
СР=12:2=6см Поскольку ᐃ АВС ~ ᐃ MСN, все их соответственные части имеют равный коэффициент подобия. СР:СQ=1,5 6:СQ=1,5 СQ=6:1,5=4 см РQ=СР- СQ=6 -4=2 см
Середины сторон четырехугольника являются вершинами параллелограмма (теорема Вариньона). Стороны параллелограмма Вариньона параллельны диагоналям четырехугольника и равны их половинам (т.к. являются средними линиями в треугольниках, образованных сторонами и диагоналями).
Диагонали равнобедренной трапеции равны, следовательно стороны параллелограмма Вариньона равны и он является ромбом.
MN - средняя линия в ABC => MN||AC, MN=AC/2. Аналогично LK||AC, LK=AC/2.
MN||LK, MN=LK => MNKL - параллелограмм (противоположные стороны параллельны и равны).
AC=BD, NK=BD/2 => MN=NK => MNKL - ромб (смежные стороны равны).
Так как MN║АВ, четырехугольник АВNM - трапеция.
В трапецию можно вписать окружность только тогда, когда суммы противоположных сторон равны.
АВ+MN=AM+BN
Периметр СМN= периметр АВС- АВ+3+AM+BN =Р АВС- АВ+3+(АВ+3)=12+6=18
ᐃ АВС ~ ᐃ MСN по свойству углов при пересечении параллельных прямых секущей и общему углу С.
Отношение периметров подобных треугольников равно отношению его сторон.
Р ᐃ MСN: Р ᐃ АВС=18:12=1,5
MN:АВ=1,5
3:АВ=1,5
АВ=3:1,5=2 см ( вообще-то не пригодится)
----
Расстояние от вершины треугольника до точки касания вневписанной окружности с продолжением его боковой стороны равно его полупериметру :
СР=12:2=6см
Поскольку ᐃ АВС ~ ᐃ MСN, все их соответственные части имеют равный коэффициент подобия.
СР:СQ=1,5
6:СQ=1,5
СQ=6:1,5=4 см
РQ=СР- СQ=6 -4=2 см