Если нужны площади всех основных фигур, то вот Вам мой список: Площадь треугольника: 1)S = 1/2 * a * h(a). a - сторона треугольника, h(a) - высота, проведённая к этой стороне. 2)S = 1/2 * a * b * sin a. Здесь a,b - две стороны треугольника, a - угол между ними. 3)S = pr. Здесь p - полупериметр треугольника, r - радиус вписанной в него окружности. 4)S = abc/4R. Здесь a,b,c - стороны треугольника, R - радиус описанной около него окружности. 5)S = sqrt(p(p-a)(p-b)(p-c)) - формула Герона. a,b,c - стороны треугольника, p - его полупериметр, sqrt() - обозначение квадратного корня 6)S = a^2 * sqrt3 / 4 - формула площади правильного треугольника. a - его сторона.
Площадь параллелограмма: 1)S = a * h(a). Здесь a - сторона параллелограмма, h(a) - высота, проведённая к этой стороне 2)S = ab * sin a. a,b - две стороны параллелограмма, a - угол между ними
Площадь ромба: 1)S = absina - смотри выше. 2)S = 1/2 * d1 * d2. Здесь d1,d2 - диагонали ромба
Площадь квадрата: S = a^2. a - сторона квадрата
Площадь прямоугольника: S = ab. a,b - стороны прямоугольника
Площадь трапеции: S = (a+b)/2 * h - a,b - основания трапеции. h - высота Есть ещё для трапеции формула Герона, но я её здесь не привожу по той простой причине, что она сложна, а применяется очень редко(в моей работе это было всего один раз)
Площадь круга: пиR^2 - без комментариев
Площадь правильного шестиугольника: 3a^2 * sqrt3 / 2
Обозначим ключевые точки как показано на рисунке. Проведем продолжение высоты OE к стороне AB и обозначим точку пересечения как F (как показано на рисунке). Площадь ромба (как и параллелограмма) равна произведению высоты на сторону ромба. Высота ромба = EF (т.к. EF перпендикулярна CD). Рассмотрим треугольники DOE и BOF. DO=OB (по второму свойству ромба) /DOE=/BOF (т.к. они вертикальные) /EDO=/FBO (т.к. это внутренние накрест-лежащие) Следовательно, треугольники DOE и BOF равны по второму признаку. Тогда OE=OF => EF=2*OE=2*1=2 Sромба=EF*CD=2*9=18 ответ: Sромба=18
Площадь треугольника:
1)S = 1/2 * a * h(a). a - сторона треугольника, h(a) - высота, проведённая к этой стороне.
2)S = 1/2 * a * b * sin a. Здесь a,b - две стороны треугольника, a - угол между ними.
3)S = pr. Здесь p - полупериметр треугольника, r - радиус вписанной в него окружности.
4)S = abc/4R. Здесь a,b,c - стороны треугольника, R - радиус описанной около него окружности.
5)S = sqrt(p(p-a)(p-b)(p-c)) - формула Герона. a,b,c - стороны треугольника, p - его полупериметр, sqrt() - обозначение квадратного корня
6)S = a^2 * sqrt3 / 4 - формула площади правильного треугольника. a - его сторона.
Площадь параллелограмма:
1)S = a * h(a). Здесь a - сторона параллелограмма, h(a) - высота, проведённая к этой стороне
2)S = ab * sin a. a,b - две стороны параллелограмма, a - угол между ними
Площадь ромба:
1)S = absina - смотри выше.
2)S = 1/2 * d1 * d2. Здесь d1,d2 - диагонали ромба
Площадь квадрата:
S = a^2. a - сторона квадрата
Площадь прямоугольника:
S = ab. a,b - стороны прямоугольника
Площадь трапеции:
S = (a+b)/2 * h - a,b - основания трапеции. h - высота
Есть ещё для трапеции формула Герона, но я её здесь не привожу по той простой причине, что она сложна, а применяется очень редко(в моей работе это было всего один раз)
Площадь круга: пиR^2 - без комментариев
Площадь правильного шестиугольника: 3a^2 * sqrt3 / 2
Проведем продолжение высоты OE к стороне AB и обозначим точку пересечения как F (как показано на рисунке).
Площадь ромба (как и параллелограмма) равна произведению высоты на сторону ромба.
Высота ромба = EF (т.к. EF перпендикулярна CD). Рассмотрим треугольники DOE и BOF.
DO=OB (по второму свойству ромба)
/DOE=/BOF (т.к. они вертикальные)
/EDO=/FBO (т.к. это внутренние накрест-лежащие)
Следовательно, треугольники DOE и BOF равны по второму признаку.
Тогда OE=OF => EF=2*OE=2*1=2
Sромба=EF*CD=2*9=18
ответ: Sромба=18