Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу(или среднему геометрическому тех отрезков на которые высота разбивает гипотенузу).
Можно также использовать ещё одно свойство высоты из прямого угла.
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
Если высоту обозначить х, то из подобия треугольников составляем пропорцию: х/4 = 9/х, х² = 36, х = 6 см.
Четырехугольник ABCD, К - середина АВ, L - середина ВС, M - середина CD, N - середина AD, Р - середина АС, Q - середина BD. Надо доказать, что КМ, LN и PQ пересекаются в одной точке.КN - средняя линяя в треугольнике ABD, поэтому KN II BD, KN = BD/2; точно также доказывается, что LM II BD, KL II AC, MN II AC. Поэтому KLMN - параллелограмм, в котором LN и KM - диагонали, поэтому в точке пересечения они делятся пополам, то есть КМ проходит через середину LN.С другой стороны,LQ - средняя линяя в треугольнике BCD, то есть LQ II CD, а PN - средняя линяя в треугольнике ACD, PN II CD, следовательно, PN II LQ.LP - средняя линяя в треугольнике ABC, то есть LP II AB, а QN - средняя линяя в треугольнике ABD, QN II AB, следовательно, QN II LP.Поэтому PLQN - параллелограмм, и его диагонали PQ и LN в точке пересечения делятся пополам.То есть PQ, так же как и КМ, проходит через середину LN.
Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу(или среднему геометрическому тех отрезков на которые высота разбивает гипотенузу).
Можно также использовать ещё одно свойство высоты из прямого угла.
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
Если высоту обозначить х, то из подобия треугольников составляем пропорцию: х/4 = 9/х, х² = 36, х = 6 см.