в прямоугольнике ABCD, где AC и BD диагонали пересикающиеся в точке О, угол AOB=68 градусов. Найти углы ABO, CBO, BAO и вас, через дано найти решение с чертежом
В треуг.АВС проведем медианы( они же высоты) АК,СD,ВР Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота АК делит сторону ВС пополам. ВС=ВК+КС ВК=КС=3:2=1,5 - катет АС=3 - гипотенуза Находим катет АК (теор.Пифагора): АК2=АС2 - КС2 АК2=3*3 - 1,5*1,5 АК=корень из 6,75 АК=2,598 Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1 АО+ОК=3(части) - составляют 2,598 АО=2части, АО=2,598:3*2=1,732 Рассмотрим треуг.АОМ ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС Находим АМ(теор.Пифагора): АМ2=АО2+ОМ2 Ом=1;АО=1,732; АМ2=1*1+1,732*1,732 АМ=корень из 4 АМ=2 Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому
1)В треугольнике АВС касательные ВА и ВС поделены на две части точками пересечения с окружностью К и М соответственно. Отрезки ВК и ВМ равны по свойству касательных => ВК = 5 =ВМ. 2) Точно также: касательные АВ и АС поделены на две части точками пересечения с окружностью К и L соответственно. Отрезки АК и АL равны по свойству касательных => АК=24=АL 3) то же самое с отрезками МС и LС: они равны. (Их значение неизвестно. 4) АВ +ВС+АС =60; АК +КВ+ВМ+МС+АL+LС=60 Из 1), 2) и 3) => 24+5+5+МС+24+МС=60; МС=1 => АВ=29; ВС=6; АС =25
Известны все стороны, можно по формуле: Sтреугольника= корень(р(р-АВ)(р-ВС)(р-АС), Где р= (АВ+ВС+АС)/2 У меня получилось 60
Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота
АК делит сторону ВС пополам.
ВС=ВК+КС
ВК=КС=3:2=1,5 - катет
АС=3 - гипотенуза
Находим катет АК (теор.Пифагора):
АК2=АС2 - КС2
АК2=3*3 - 1,5*1,5
АК=корень из 6,75
АК=2,598
Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1
АО+ОК=3(части) - составляют 2,598
АО=2части, АО=2,598:3*2=1,732
Рассмотрим треуг.АОМ
ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный
АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС
Находим АМ(теор.Пифагора):
АМ2=АО2+ОМ2
Ом=1;АО=1,732;
АМ2=1*1+1,732*1,732
АМ=корень из 4
АМ=2
Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому
2) Точно также: касательные АВ и АС поделены на две части точками пересечения с окружностью К и L соответственно. Отрезки АК и АL равны по свойству касательных => АК=24=АL
3) то же самое с отрезками МС и LС: они равны. (Их значение неизвестно.
4) АВ +ВС+АС =60;
АК +КВ+ВМ+МС+АL+LС=60
Из 1), 2) и 3) => 24+5+5+МС+24+МС=60;
МС=1 => АВ=29; ВС=6; АС =25
Известны все стороны, можно по формуле:
Sтреугольника= корень(р(р-АВ)(р-ВС)(р-АС),
Где р= (АВ+ВС+АС)/2
У меня получилось 60