2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
Означення. Прямокутник — це паралелограм, у якого всі кути прямі. Теорема (про рівність діагоналей прямокутника). Доведення. Для доведення використовуємо той факт, що ∆ACD=∆ВCD за першою ознакою рівності трикутників (CD — спільна, АС= BD як протилежні сторони паралелограма, C= D=90). А в рівних трикутниках проти рівних кутів (у цьому випадку прямих кутів) лежать рівні сторони. Отже, ВС=AD, як гіпотенузи рівних прямокутних трикутників, ще й необхідно було довести. Властивості прямокутника 1. Протилежні сторони рівні й паралельні. 2. Усі кути прямі. 3. Діагоналі рівні, перетинаються в одній точці і точкою перетину діляться пополам. 4. Кожна діагональ ділить прямокутник на два рівні трикутники. 5. Точка перетину діагоналей є спільною вершиною чотирьох трикутників, які попарно рівні і мають в основах паралельні прямі.
Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3
Властивості прямокутника 1. Протилежні сторони рівні й паралельні. 2. Усі кути прямі. 3. Діагоналі рівні, перетинаються в одній точці і точкою перетину діляться пополам. 4. Кожна діагональ ділить прямокутник на два рівні трикутники. 5. Точка перетину діагоналей є спільною вершиною чотирьох трикутників, які попарно рівні і мають в основах паралельні прямі.