1) Пусть точка C - точка пересечения отрезков AB и MK.
Тогда по первому признаку равенства треугольников (две стороны и угол между ними) будут равными треугольники AKC и CBM.
А значит и углы тругольников AKС и СMB равны. Из этого следует, по теореме о параллельных прямых, так как накрест-лежащие углы (AKС и СMB) равны, то отрезки AK и MB параллельны.
2) См. рисунок.
Так как CH- биссектриса, то углы KCH и HCT равны между собой и равны половине угла KCP, т.е. 29°.
Так как CK и TH параллельны, то накрест-лежащие углы KCH и CHT равны, также 29°.
Угол CTH = 180 - HCT - CHT =180-29-29=122°.
Таким образом углы в треугольнике CHT: 29, 29, 122.
Объяснение:
линейная ф-ция у=kх+b
прямая а имеет координаты (-2;0), (-1;2), подставляем в уравнение
первую точку 0= -2k+b b=2k
вторую точку 2= -k+b b=k+2
2к=к+2
к=2, b=2+2=4
значит уравнение прямой а выглядит как у=2х+2
прямая b имеет координаты (0;0), (-1;2), подставляем в уравнение
первую точку 0= 0*к+ b=0
вторую точку 2= -k+0 к= -2
значит уравнение прямой b выглядит как у= -2х
прямая с имеет координаты (-2;0), (2; -4), подставляем в уравнение
первую точку 0= -2k+b b=2k
вторую точку -4= 2k+b b= -4 - 2к
2к= -4 - 2к
4к= -4, к= -1 b= 2*(-1)= -2
значит уравнение прямой а выглядит как у= -х-2
1) Пусть точка C - точка пересечения отрезков AB и MK.
Тогда по первому признаку равенства треугольников (две стороны и угол между ними) будут равными треугольники AKC и CBM.
А значит и углы тругольников AKС и СMB равны. Из этого следует, по теореме о параллельных прямых, так как накрест-лежащие углы (AKС и СMB) равны, то отрезки AK и MB параллельны.
2) См. рисунок.
Так как CH- биссектриса, то углы KCH и HCT равны между собой и равны половине угла KCP, т.е. 29°.
Так как CK и TH параллельны, то накрест-лежащие углы KCH и CHT равны, также 29°.
Угол CTH = 180 - HCT - CHT =180-29-29=122°.
Таким образом углы в треугольнике CHT: 29, 29, 122.