(1) Откладываем на прямой отрезок равный заданной длине основания AB. (2) Проводим две окружности радиусом равным заданной высоте с центрами в A и B (3) через точки их пересечения проводим линию, которая разделит основание AB на два равных отрезка AD и DB (4) Проводим окружность с центром в точке D и радиусом |AD| (= DB) (5) Через точки пересечения этой окружности с окружностями построенными в пункте 2 проводим касательные к этим двум окружностям из точек A и B (6) В точке пересечения этих касательных - вершина C
А) Меньшая высота параллелограмма находится из равнобедренного прямоугольного треугольника АВН (острые углы = 45°). По Пифагору 2*ВН²=АВ². Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда. б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD: <КАD =<KDA = 45°. Значит АК=КD= а√2. Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3. Sinα = a/а√3 = √3/3. ответ: искомый угол равен arcsin(√3/3). в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√3). г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть Sполн=а²(2+√3)+2*AD*BH=а²(2+√3)+4а² = а²(6+√3).
(2) Проводим две окружности радиусом равным заданной высоте с центрами в A и B
(3) через точки их пересечения проводим линию, которая разделит основание AB на два равных отрезка AD и DB
(4) Проводим окружность с центром в точке D и радиусом |AD| (= DB)
(5) Через точки пересечения этой окружности с окружностями построенными в пункте 2 проводим касательные к этим двум окружностям из точек A и B
(6) В точке пересечения этих касательных - вершина C
Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3. Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√3).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Sполн=а²(2+√3)+2*AD*BH=а²(2+√3)+4а² = а²(6+√3).