Если рассмотреть площади треугольников АВС и BCD, то нетрудно заметить: S(ABC) = S(ABP) + S(BPC) S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые))) т.е. доказав равенство площадей треугольников АВС и ВСD, мы докажем требуемое треугольники АВС и ВСD имеют общую сторону... если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))), то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции))) значит и площади равны...
1.Рассмотрим треугольник PHO и треугольник MKO:
OH=OK (по усл.)
OP=OM (по усл.) }→ треуг.PHO=треуг.MKO
угол MOK=углу POH (по св-ву вертикальных углов)
→угол OPH = углу OMK, как соответственные элементы в равных треугольниках;
2. MO=PO (по усл.)
HO=KO (по усл.) }→PK=MH
PK=PO+KO
MH=MO+HO
3. Т.к. треугольник MOP - р/б, угол MPO= углу OMP, как углы при основании р/б треуг.;
4. Рассмотрим треугольник PMH и треугольник MPK:
MH=PK(см п. 2);
MP - общая; }→треуг. PMH= треуг. MPK;
угол MPO = углу OMP (см п.3)
ч.т.д.
то нетрудно заметить:
S(ABC) = S(ABP) + S(BPC)
S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые)))
т.е. доказав равенство площадей треугольников АВС и ВСD,
мы докажем требуемое
треугольники АВС и ВСD имеют общую сторону...
если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))),
то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)))
значит и площади равны...