продливаем отрезок DM до пересечения со стороной параллелограмма ВС. Пусть точка пересечения будет Е. Тогда треугольники АМD и ВМЕ равны по второму признаку равенства теугольников (по стороне и прилежащим к ней углам - по условию сторона МВ равна МА,углы ЕМВ и DMA - вертикальные,а угол МDA равен углу MEВ как вертикальные углы при параллельных прямых ЕС и АД.Следовательно, сторона АD равна стороне ЕВ,а так как в параллелограмме противолежащие стороны равны,то получаем равенство АД=ВС=ЕВ )
Обозначим точку пересечения отрезков ДМ и АС как К. Тогда треугольники АКД и СКЕ - подобны по первому признаку подобия (по двум углам - углы АКД и СКЕ - вертикальные,а уголы АДК и КЕС - вертикальные ),следовательно,если треугольники подобны,то можем записать соотношение сторон:
АК/CK=AD/EC,так как ЕС =ЕВ+ВС,получим
АК/CK=AD/(ЕВ+ВС) (1)
Пусть сторона АД будет х, а отрезок АК будетт у,тогда запишем равенство АД=ВС=ЕВ=х,а КС =18-у (по условию задачи).
Теперь запишем уравнение (1) в таком виде
у /(18-у) = х/2х,так как х больше ноля (длина отрезка не может быть отрицательной),то правую часть уравнения можн сократить на х.
делит на части длиной 6 и 12 см
нужны дополнительные построения
продливаем отрезок DM до пересечения со стороной параллелограмма ВС. Пусть точка пересечения будет Е. Тогда треугольники АМD и ВМЕ равны по второму признаку равенства теугольников (по стороне и прилежащим к ней углам - по условию сторона МВ равна МА,углы ЕМВ и DMA - вертикальные,а угол МDA равен углу MEВ как вертикальные углы при параллельных прямых ЕС и АД.Следовательно, сторона АD равна стороне ЕВ,а так как в параллелограмме противолежащие стороны равны,то получаем равенство АД=ВС=ЕВ )
Обозначим точку пересечения отрезков ДМ и АС как К. Тогда треугольники АКД и СКЕ - подобны по первому признаку подобия (по двум углам - углы АКД и СКЕ - вертикальные,а уголы АДК и КЕС - вертикальные ),следовательно,если треугольники подобны,то можем записать соотношение сторон:
АК/CK=AD/EC,так как ЕС =ЕВ+ВС,получим
АК/CK=AD/(ЕВ+ВС) (1)
Пусть сторона АД будет х, а отрезок АК будетт у,тогда запишем равенство АД=ВС=ЕВ=х,а КС =18-у (по условию задачи).
Теперь запишем уравнение (1) в таком виде
у /(18-у) = х/2х,так как х больше ноля (длина отрезка не может быть отрицательной),то правую часть уравнения можн сократить на х.
получаем
у /(18-у) = 1/2
у=6
АК=6, КС =18-у=18-6=12
Объяснение:
В прямоугольном ∆ АВС катет ВС=а, АС=b, гипотенуза=с; CH- высота.
ВН -проекция ВС на АВ =а1
АН - проекция АС на АВ=b1.
1)
если а1=4,2, b1= 5,8,
с=а1+b1=10
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
а²=с•а1=10•4,2=42
а=√42 м
b²=c•b1=10•5,8=58
b=√58 м
2)
c=a1+b1=6,4+b1
a²=c•a1
64=6,4•(6,4+b1) Сократим на 6,4 обе части уравнения.
10=6,4+b1
b1=10-6,4=3,6 см
c=6,4+3,6=10 см
b=√(c•b1)=v36=6 см
3)
b²=c•b1
c=b²:b1=36:3,6=10 дм
а=√(c*-b*)=√64=8 дм
a1=a²:c=64:10=6,4 дм