В прямоугольном параллелепипеде одна из сторон основания равна 6 см, а боковое ребро 4 см. Диагональ параллелепипеда образует с плоскостью основания угол 30 градусов. Найдите объем параллелепипеда.
Пусть а,b- катеты, c - гипотенуза, h - высота, проведенная к гипотенузе. дано а=10, h=6 найти b
второй катет будем искать через площадь треугольника. Площадь треугольника можно найти по формуле через высоту S=1/2 * c * h С другой стороны, площадь прямоугольного треугольника можно выразить через катеты S=1/2 * a * b
значит 1/2 * c * h = 1/2 * a * b с * h = a * b √(a² + b²) * h = a * b возводим в квадрат обе части (a² + b²) * h² = a² * b² a² * h² = b² ( a² - h²) b = √((a² * h²) / (a² - h²) )= a * h / √(a² - h²) = 10*6/√64 = 7,5
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
дано а=10, h=6
найти b
второй катет будем искать через площадь треугольника.
Площадь треугольника можно найти по формуле через высоту S=1/2 * c * h
С другой стороны, площадь прямоугольного треугольника можно выразить через катеты S=1/2 * a * b
значит 1/2 * c * h = 1/2 * a * b
с * h = a * b
√(a² + b²) * h = a * b возводим в квадрат обе части
(a² + b²) * h² = a² * b²
a² * h² = b² ( a² - h²)
b = √((a² * h²) / (a² - h²) )= a * h / √(a² - h²) = 10*6/√64 = 7,5
Объяснение:
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
списано вот здесь