Виділяємо повні квадрати:
для x: 5 (x²-2 * 3x + 3²) -5 * 3² = 5 (x-3) ²-45,
для y: 9 (y² + 2 * 1y + 1) -9 * 1 = 9 (y + 1) ²-9.
В результаті отримуємо: 5 (x-3) ² + 9 (y + 1) ² = 45
Розділимо всі вираз на 45: ((x-3) ² / 9) + ((y + 1) ² / 5) = 1.
Параметри кривої - це еліпс, його півосі a = 3 і b = √5.
Центр еліпса в точці: C (3; -1)
Координати фокусів F1 (-c; 0) і F2 (c; 0), де c - половина відстані між фокусами: F1 (-2; 0), F2 (2; 0). з = √ (9 - 5) = + -√4 = + -2.
З урахуванням центру, координати фокусів рівні:
F1 ((- 2 + 3) = 1; -1), F2 ((2 + 3) = 5; -1).
Ексцентриситет дорівнює: е = с / а = 2/3.
Внаслідок нерівності c <a ексцентриситет еліпса менше 1.
1. 2√19 см.
2. 2√3 см.
3. ∠С=120°, BC=3,55 см, АС=6,68 см.
4. 14,2 см.
Объяснение:
По теореме косинусов:
CosC=(AC²+BC²-AB²)/2BC*AC; Cos120°= -1/2;
AB²=AC²+BC²-2AC*BC*Cos120°=4²+6²-2*4*6*(-1/2)=16+36+24=76;
AB=√76=2√19 см.
***
2. По теореме синусов:
BC/SinA=AB/SinC; BC=3√2; SinA=Sin60°=√3/2; Sin45°=√2/2.
AB=BC*SinC/SinA=3√2(√2/2)/(√3/2)=2√3 см.
∠С=180°-(∠A+∠B)=180°-(20°+40°)=180°-60°=120°.
По теореме синусов:
a/SinA=b/SInB=c/SinC; Sin120°=√3/2; Sin20°=0,342; Sin40°=
a=c*SinA/SinC=9*0,342/0,866=3,55см.
b=c*SinB/SinC=9*0,643/0,866=6,68 см.
4. Радиус окружности, описанной около треугольника находят по формуле:
R=(abc)/4√p(p-a)(p-b)(p-c);
p=(a+b+c)/2=(17+25+28)/2=70/2=35 см.
R=(17*25*28)/4√35(35-17)(35-25)(35-28)= 11 900/4√35*18*10*7=11 900/4√44 100=11 900/4*210=11 900/840=14,2 см.
Виділяємо повні квадрати:
для x: 5 (x²-2 * 3x + 3²) -5 * 3² = 5 (x-3) ²-45,
для y: 9 (y² + 2 * 1y + 1) -9 * 1 = 9 (y + 1) ²-9.
В результаті отримуємо: 5 (x-3) ² + 9 (y + 1) ² = 45
Розділимо всі вираз на 45: ((x-3) ² / 9) + ((y + 1) ² / 5) = 1.
Параметри кривої - це еліпс, його півосі a = 3 і b = √5.
Центр еліпса в точці: C (3; -1)
Координати фокусів F1 (-c; 0) і F2 (c; 0), де c - половина відстані між фокусами: F1 (-2; 0), F2 (2; 0). з = √ (9 - 5) = + -√4 = + -2.
З урахуванням центру, координати фокусів рівні:
F1 ((- 2 + 3) = 1; -1), F2 ((2 + 3) = 5; -1).
Ексцентриситет дорівнює: е = с / а = 2/3.
Внаслідок нерівності c <a ексцентриситет еліпса менше 1.
1. 2√19 см.
2. 2√3 см.
3. ∠С=120°, BC=3,55 см, АС=6,68 см.
4. 14,2 см.
Объяснение:
По теореме косинусов:
CosC=(AC²+BC²-AB²)/2BC*AC; Cos120°= -1/2;
AB²=AC²+BC²-2AC*BC*Cos120°=4²+6²-2*4*6*(-1/2)=16+36+24=76;
AB=√76=2√19 см.
***
2. По теореме синусов:
BC/SinA=AB/SinC; BC=3√2; SinA=Sin60°=√3/2; Sin45°=√2/2.
AB=BC*SinC/SinA=3√2(√2/2)/(√3/2)=2√3 см.
***
∠С=180°-(∠A+∠B)=180°-(20°+40°)=180°-60°=120°.
По теореме синусов:
a/SinA=b/SInB=c/SinC; Sin120°=√3/2; Sin20°=0,342; Sin40°=
a=c*SinA/SinC=9*0,342/0,866=3,55см.
b=c*SinB/SinC=9*0,643/0,866=6,68 см.
***
4. Радиус окружности, описанной около треугольника находят по формуле:
R=(abc)/4√p(p-a)(p-b)(p-c);
p=(a+b+c)/2=(17+25+28)/2=70/2=35 см.
R=(17*25*28)/4√35(35-17)(35-25)(35-28)= 11 900/4√35*18*10*7=11 900/4√44 100=11 900/4*210=11 900/840=14,2 см.