В прямоугольном треугольнике ABC C равен 90 градусов биссектрисы CD и AE пересекаются в точке O величина угла aod равна 105 градусов Найдите меньший острый угол в треугольнике ABC
Для решения нужно вспомнить. что: Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому h²=9·16=144 h=12 Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты: 1)9²+12²=225 √225=15 2)16²+12²=400 √400=20 Катеты равны 15см и 20 см, гипотенуза 9+16=25 см
Можно применить для решения другую теорему. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Найдем гипотенузу: 9+16=25 см Пусть меньший катет будет х. Тогда его проекция - 9см: х²= 9·25=225 х=15 см Больший катет пусть будет у: у²=25·16=400 у=20 см
Треугольник , у которого один угол прямой, а два других острые.
Гипотенуза.
Если острый угол прямоугольного треугольника равен 30°, то катет,лежащий напротив него равен половине гипотенузы.
№4
угол BAС=180-(90+42)=48 градусов.
№5
АВ=ВС*2=12*2=24см
№6
Бокова сторона АС является гипотенузой треугольника АСД. Катет СД равен половине гипотенузы. СД=АС:2=7:2=3,5 см.Поэтому угол САД= 30°. Угол АСВ= 180°-(90°+30°)=60°,Угол АСВ=СВА=60°,значит и угол САВ=60°
ответ: в равнобедренном треугольнике АВС все углы равны 60°
№7
Высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника является медианой и делит его ещё на два равнобедренных прямоугольных треугольника .В получившихся треугольниках эта высота становится катетом. 18:2= 9см,значит и высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника равна 9 см.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Поэтому h²=9·16=144
h=12
Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты:
1)9²+12²=225
√225=15
2)16²+12²=400
√400=20
Катеты равны 15см и 20 см,
гипотенуза 9+16=25 см
Можно применить для решения другую теорему.
Катет прямоугольного треугольника есть среднее пропорциональное между
гипотенузой и проекцией этого катета на гипотенузу.
Найдем гипотенузу:
9+16=25 см
Пусть меньший катет будет х.
Тогда его проекция - 9см:
х²= 9·25=225
х=15 см
Больший катет пусть будет у:
у²=25·16=400
у=20 см
Объяснение:
Треугольник , у которого один угол прямой, а два других острые.
Гипотенуза.
Если острый угол прямоугольного треугольника равен 30°, то катет,лежащий напротив него равен половине гипотенузы.
№4
угол BAС=180-(90+42)=48 градусов.
№5
АВ=ВС*2=12*2=24см
№6
Бокова сторона АС является гипотенузой треугольника АСД. Катет СД равен половине гипотенузы. СД=АС:2=7:2=3,5 см.Поэтому угол САД= 30°. Угол АСВ= 180°-(90°+30°)=60°,Угол АСВ=СВА=60°,значит и угол САВ=60°
ответ: в равнобедренном треугольнике АВС все углы равны 60°
№7
Высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника является медианой и делит его ещё на два равнобедренных прямоугольных треугольника .В получившихся треугольниках эта высота становится катетом. 18:2= 9см,значит и высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника равна 9 см.