В прямоугольном треугольнике ABC из вершины прямого угла проведена высота AD. Определите длину AD, если BD = 4 см, DC = 9 см.
Указание: для решения воспользуйтесь утверждением, что высота прямоугольного треугольника разбивает его на два треугольника, подобных друг другу.
Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.
3. через эти точки проводим прямую до пересечения с первой окружностью. И соединяем эту точку с левой точкой нашей стороны. Это и будет поворот на 60 нашей стороны.
4.берем вторую сторону , измеряем ее длину из одной точки и измеряем расстояние от второго конца нашей первой стороны, которую мы уже повернули до дальнего края второй стороны.
5.от левого конца повернутой стороны строим две окружности измеренных радиусов и в точке их пересечения получаем второй конец второй стороны.
6. И т. д. с каждой стороной.