В прямоугольном треугольнике ABC на катете AC отмечена точка D такая, что ∠ABD=2∠DBC. Точка E лежит на гипотенузе BC, F — основание перпендикуляра из E на прямую BD. Оказалось, что BF=BA. Докажите, что DE+EF=AD.
Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
знайдемо середини диагоналей читырехугольника
середина диагоналей aс: x=(-3+(-1))/2=-2; y=(-2+6)/2=2
середина диагоналей bd: x=(2+(-6))/2=-2; y=(1+3)/2=2
середины диагоналей данного читерехугольника сокращаються, значить паралелограмом
по формуле знаем что довжиния сторн читерехугольника abcd
ab=корень(())^2+())^2)=корень(25+9)=корень(34)
bc=-2)^2+(6-1)^2)=корень(9+25)=корень(34)
cd=))^2+(3-6)^2)=корень(25+9)=корень(34)
ad=))^2+())^2)=корень(9+25)=корень(34)
сторони даного паралелограма равен, тому ромбом.
по формулі відстані знайдемо довжини діагоналей чотирикутника abcd
ac=корі))^2+())^2)=корінь(4+64)=корінь(68)
bd=корі-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)
даний чотирикутник(паралелограм) є ромбом і прямокутником, тому він квадрат