В прямоугольном треугольнике ABC проведена высота CK, разбивающая данный треугольник на два треугольника, причём S(ACK) = 12,5, а площадь S (BCK) = 30. Найдите площадь параллелограмма
В равнобедренном треугольнике угол с градусной мерой в 120 градусов будет являться лежащим напротив основания данного треугольника, а оставшиеся два, равных друг другу угла (т.к. они лежат у основания этого треугольника), будут равны (180-120):2=30 градусов. Значит, высота, опущенная к основанию равнобедренного треугольника, будет являться катетом в равнобедренном треугольнике. Эта высота лежит напротив угла в 30 градусов, т.е. она равна половине гипотенузы прямоугольного треугольника. Сама высота проведена к середине основания, т.к. проведена из тупого угла в равнобедренном треугольнике. Значит, отрезок, соединяющий середины боковой стороны(гипотенузы) и основания, будет проведён из прямого угла в прямоугольном треугольнике к середине его гипотенузы. Значит, этот отрезок является медианой в прямоугольном треугольнике, проведённой из прямого угла. А как мы все знаем, медиана, проведённая из вершины прямого угла к гипотенузе, равна половине этой же гипотенузы. То есть искомый нами отрезок равен высоте, значение которой нам известно. Таким образом, отрезок равен 3-ём см. ответ: 3 см.
Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3
Значит, высота, опущенная к основанию равнобедренного треугольника, будет являться катетом в равнобедренном треугольнике. Эта высота лежит напротив угла в 30 градусов, т.е. она равна половине гипотенузы прямоугольного треугольника.
Сама высота проведена к середине основания, т.к. проведена из тупого угла в равнобедренном треугольнике. Значит, отрезок, соединяющий середины боковой стороны(гипотенузы) и основания, будет проведён из прямого угла в прямоугольном треугольнике к середине его гипотенузы.
Значит, этот отрезок является медианой в прямоугольном треугольнике, проведённой из прямого угла. А как мы все знаем, медиана, проведённая из вершины прямого угла к гипотенузе, равна половине этой же гипотенузы. То есть искомый нами отрезок равен высоте, значение которой нам известно.
Таким образом, отрезок равен 3-ём см.
ответ: 3 см.
Задание: 3
Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3