В данном случае необходимо использовать обратную теорему Пифагора. Которая гласит, что, если в треугольнике со сторонами a, b и c выполняется равенство c2 = a 2 + b 2 , то этот треугольник прямоугольный, причем прямой угол противолежит стороне c.
Так как сумма квадратов сторон треугольника МРК - MP и KP - равна квадрату большей стороны - MK:
9^2+12^2=15^2,значит треугольник-прямоугольный,то есть его площадь равна половине произведения катетов MPи KP:
S=9*12/2=54.
Если в треугольнике провести высоту PH, например, то она будет являться высотой и для треугольника МРК, и для треугольника КРТ. Таким образом, получаем, что:
Sкрт=1/2 * РН*КТ
Sмрк=1/2 * РН*МК
Данные площади относятся, как КТ/МК, то есть, как 10/15= 2/3 -> площадь треугольника КРТ равна 2*Sмрк /3 = 2* 54/3=36
Получается, что площадь второго треугольника - треугольника МРТ - равна 1/3 площади основного треугольника, то есть 18.
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=8 см - это высота пирамиды. Апофема пирамиды (высота боковой грани) SK =10. Из прямоугольного ΔSKО: КО=√(SK²-SО²)=√(10²-8²)=√36=6 Сторона основания АД=2КО=2*6=12 Площадь основания Sосн=АД²=12²=144 Периметр основания Р=4АД=4*12=48 Площадь боковой поверхности Sбок=P*SK/2=48*10/2=240 Площадь полной поверхности Sполн=Sбок+Sосн=240+144=384 Объем V=SO*Sосн/3=8*144/3=384
В данном случае необходимо использовать обратную теорему Пифагора. Которая гласит, что, если в треугольнике со сторонами a, b и c выполняется равенство c2 = a 2 + b 2 , то этот треугольник прямоугольный, причем прямой угол противолежит стороне c.
Так как сумма квадратов сторон треугольника МРК - MP и KP - равна квадрату большей стороны - MK:
9^2+12^2=15^2,значит треугольник-прямоугольный,то есть его площадь равна половине произведения катетов MPи KP:
S=9*12/2=54.
Если в треугольнике провести высоту PH, например, то она будет являться высотой и для треугольника МРК, и для треугольника КРТ. Таким образом, получаем, что:
Sкрт=1/2 * РН*КТ
Sмрк=1/2 * РН*МК
Данные площади относятся, как КТ/МК, то есть, как 10/15= 2/3 -> площадь треугольника КРТ равна 2*Sмрк /3 = 2* 54/3=36
Получается, что площадь второго треугольника - треугольника МРТ - равна 1/3 площади основного треугольника, то есть 18.
ответ: 18 и 36
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=8 см - это высота пирамиды.
Апофема пирамиды (высота боковой грани) SK =10.
Из прямоугольного ΔSKО:
КО=√(SK²-SО²)=√(10²-8²)=√36=6
Сторона основания АД=2КО=2*6=12
Площадь основания Sосн=АД²=12²=144
Периметр основания Р=4АД=4*12=48
Площадь боковой поверхности
Sбок=P*SK/2=48*10/2=240
Площадь полной поверхности
Sполн=Sбок+Sосн=240+144=384
Объем V=SO*Sосн/3=8*144/3=384