В прямоугольном треугольнике abc с прямым углом в вершине С гипотенуза составляет 13 градусов, а катет CB=12. отрезок KC=5 проведен к вершине С треугольника и является перпендикуляром к плоскости ABC. найди 1)площадь треугольника KCA 2)градусную меру угла KCA CРОЧНО,
По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине.
а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα
a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ
a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω
Получаем 4 неизвестных: а, α, β и ω.
Поэтому добавляем четвёртое уравнение:
α + β + ω = 2π.
Ниже приведено решение системы этих уравнений методом итераций:
α градус α радиан cos α a² = a =
25 24 150.0020 2.6180 -0.8660 45.7850 6.7665
41 40 96.8676 1.6907 -0.1196 45.7830 6.7663
34 30 113.1304 1.9745 -0.3928 45.7848 6.7664.
С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.
0,8 м.
Объяснение:
Треугольники АОА1 и ВОВ1 подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны".
В нашем случае АО/ОВ =А1О/ОВ1 = 2,7/5,4 = 1/2 (стороны пропорциональны),
∠АОА1 = ∠ВОВ1 как вертикальные.
Следовательно, треугольники АОА1 и ВОВ1 подобны с коэффициентом подобия k =1/2.
Высоты А1Н и В1Н1 этих треугольников также относятся с коэффициентом k = 1:2.
В1Н1 = 1,6 м. (дано). Значит А1Н = 1,6·(1/2) = 0,8 м.