В прямоугольном треугольнике ABC, угол С=90 градусов, СD перпендикулярно AB, АС=3см, СD=2,4 см
1.Найти АВ и ВС и S треугольника АВС
2.Найти площадь, вписанного в треугольник круга
3. Разложить вектор CD по векторам CA и СВ
4. Вычислить вектор ВС-ВА умножить на АС+СВ
ответ:
с — точка, касания плоскости α со сферой; плоскость с — касательная к сфере; β образует с α угол φ; β пересекается с шаром по окружности, диаметр которой св.
построим оо1 ⊥ св, соединим точку о с точками с и в. δоо1с = δоо1b (прямоугольные, оо1 — общий катет, ос = ов = r). тогда, со1 = о1b, точка о1 — центр окружности,
по которой плоскость β пересекает шар.
построим сечение шара плоскостью сов. φ — угол между плоскостями α и β.
∠ocb = 90o -φ, поскольку δboc — равнобедренный, то ∠obo1 = 90o -φ.
из δоо1b:
площадь сечения шара
объяснение:
ответ:
в параллелограмме аbcd угол а равен углу с, угол b равен углу d.
а) к примеру, возьмем параллелограмм аbcd. угол а обозначим за х, угол b за 2х (т.к один больше другого в 2 раза). сумма углов одной стороны параллелограмма равна 180 градусам. следовательно, х + 2х = 180, 3х = 180, х = 60. соответственно второй угол будет равен 120 градусам.
б) к примеру, возьмем параллелограмм аbcd. угол а обозначим за х, угол b за х-24. сумма углов одной стороны параллелограмма равна 180 градусам. следовательно, х + х - 24 = 180. 2х = 156. х = 78. следовательно, втрой угол будет равен 76-24 = 52.