1) по особому свойству ромба - диагонали биссектрисы своих углов => угол EKA = 60°
2) достроим вторую диагональ. по особому свойству ромба - диагонали ромба взаимоперпендикулярны т.е. равны 90° => в прямоугольном треугольнике OEK (пусть точка пересечения диагоналей - т. О) второй острый угол равен 90-60=30°
3) по свойству параллелограмма (ромб - частый случай параллелограмма) диагонали в точке пересечения делятся пополам => OK =34:2=17
4) катет , лежащий против угла 30° ( угол KEO и катет OK) равен половине гипотензу, т.е. EK = 2OK = 17*2 = 34 => P AEKH = 34*4 = 136
[ч у д о в и й ж о в т и й к о л і р п о д е к у д и н а к і н ц я х х м а р о к л и с н и т ' т о ж о в т о г а р а ч и м с в і т о м т о р о ж е в и м] [с о н ц е б е з п р о м і н: я ч е р в о н е н е н а ч е з ж а р у а л е ж о в т и й с в і т о д х м а р о д б и в а є й к и д а є й а с н и й с в і т н а ш и р о к у к а р т и н у] [з а в и ш г о р о д о м с т о ї т ь н а д н і п р і с и з а а л е з ж о в т и м с у т і н к о м і м л а]
136
Объяснение:
1) по особому свойству ромба - диагонали биссектрисы своих углов => угол EKA = 60°
2) достроим вторую диагональ. по особому свойству ромба - диагонали ромба взаимоперпендикулярны т.е. равны 90° => в прямоугольном треугольнике OEK (пусть точка пересечения диагоналей - т. О) второй острый угол равен 90-60=30°
3) по свойству параллелограмма (ромб - частый случай параллелограмма) диагонали в точке пересечения делятся пополам => OK =34:2=17
4) катет , лежащий против угла 30° ( угол KEO и катет OK) равен половине гипотензу, т.е. EK = 2OK = 17*2 = 34 => P AEKH = 34*4 = 136
[ч у д о в и й ж о в т и й к о л і р п о д е к у д и н а к і н ц я х х м а р о к л и с н и т ' т о ж о в т о г а р а ч и м с в і т о м т о р о ж е в и м] [с о н ц е б е з п р о м і н: я ч е р в о н е н е н а ч е з ж а р у а л е ж о в т и й с в і т о д х м а р о д б и в а є й к и д а є й а с н и й с в і т н а ш и р о к у к а р т и н у] [з а в и ш г о р о д о м с т о ї т ь н а д н і п р і с и з а а л е з ж о в т и м с у т і н к о м і м л а]