В прямоугольном треугольнике АВС гипотенуза АВ равна 16 см, АС=ВС. Каково взаимное расположение прямой АВ и окружности с центром С и радиусом 8см? 6 см? 10 см? Ребят, ещё я не могу понять по сколько см будут катеты в этом треугольнике.
Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
рассмотрим получившиеся треугольники АВО и АСО, в них:
угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента:
- катет ОВ = катет ОС (радиусы окружности)
- ОА - общ. гипотенуза
из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ
ч. т. д.
Вектор BC{5-1;0-4}={4;-4} модуль |BC|=(4²+4²)=4√2.
Вектор CD{2-5;-3-0}={-3;-3} модуль |CD|=√(3²+3²)=3√2.
Вектор AD{2-(-2);-3-1}={4;-4} модуль |AD|=(4²+4²)=4√2.
итак, четырехугольник АВСD - параллелограмм, так как противоположные стороны попарно равны.
Проверим перпендикулярность векторов АВ и ВС, АВ и AD.
Векторы перпендикулярны, если их скалярные произведения равны 0.
(АВ*ВС)=Xab*Xbc+Yab*Ybc = 3*4+3*(-4)=0 => прямые перпендикулярны.
(АВ*АD)=Xab*Xad+Yab*Yad =3*4+3*(-4)=0 => прямые перпендикулярны.
Параллелограмм с прямыми углами - прямоугольник, что и требовалось доказать.