Площадь боковой поверхности конуса равна произведению его образующей на половину длины основания. S=l π r Нужно найти радиус OL конуса и его образующу SL Основание конуса - вписанный круг. Радиус вписанной окружности правильного треугольника, выраженный через его сторону r=(а√3):6 Образующую - апофему SL сторонвы СSB - найдем из равнобедренного прямоугольного треугольника SОL. Как гипотенуза такого треугольника,
SL= ОL√2=r√2=(а√6):6
Площадь боковой поверхности конуса равна S=l π r=(а√6):6)*(а√3):6)π= (а√6)(а√3)π:12=3aπ:12= 1/4 πa√2=(πa√2):4
пусть AB=26, а BC=32, а угол ABC=150 градусов. тогда, рассмотрим треугольник ABC:
по теореме косинусов AC^2=AB^2+BC^2-2*AB*BC*cosABC
потом рассмотришь треугольник BDC, в котором угол BCD=30 градусов (сумма соседних углов в паралеллограмме равна 180 градусам)
по теореме косинусов BD^2=CD^2+BC^2-2*CD*BC*cosBCD
потом из треугольника BOC опять же по теореме косинусов находишь косинус угла BOC
по основному тригонометрическому тождеству (sin^2(x) + cos^2(x)=1) находишь синус угла BOC
потом применяешь формулу площади параллелограмма: S=1/2*BD*AC*sinBOC
Площадь боковой поверхности конуса равна произведению его образующей на половину длины основания.
S=l π r
Нужно найти радиус OL конуса и его образующу SL
Основание конуса - вписанный круг.
Радиус вписанной окружности правильного треугольника, выраженный через его сторону r=(а√3):6
Образующую - апофему SL сторонвы СSB - найдем из равнобедренного прямоугольного треугольника SОL.
Как гипотенуза такого треугольника,
SL= ОL√2=r√2=(а√6):6
Площадь боковой поверхности конуса равна
S=l π r=(а√6):6)*(а√3):6)π= (а√6)(а√3)π:12=3aπ:12= 1/4 πa√2=(πa√2):4