Медиана делит сторону, к которой она проведена, на два равных отрезка, также она является высотой т.е мы получаем два равных прямоугольных треугольника. Стороны равностороннего треугольника обозначим обозначим за Х Теперь рассмотрим один из прямоугольных треугольников: гипотенуза равна Х катет1 равен х/2(это половина стороны,к которой проведена высота) катет2 равен медиане по т пифагора найдем гипотенузу(х) х^2=(x/2)^2+(12 корней из 3)^2 x^2=432+x^2/4 (умножаем все на 4) 4x^2=1728+x^2 4x^2-x^2=1728 3x^2=1728 x^2=1728/3 x^2=576 х=корень из 576 х=24
Стороны равностороннего треугольника обозначим обозначим за Х
Теперь рассмотрим один из прямоугольных треугольников:
гипотенуза равна Х
катет1 равен х/2(это половина стороны,к которой проведена высота)
катет2 равен медиане
по т пифагора найдем гипотенузу(х)
х^2=(x/2)^2+(12 корней из 3)^2
x^2=432+x^2/4 (умножаем все на 4)
4x^2=1728+x^2
4x^2-x^2=1728
3x^2=1728
x^2=1728/3
x^2=576
х=корень из 576
х=24
Sc = d²·tgα·√2/(2+tgα).
Sб = 4d²·tgα/(2+tgα).
So = d²/(2+tgα).
So =
Объяснение:
Призма правильная, значит в основании лежит квадрат. Пусть сторона квадрата равна "а". Тогда диагональ квадрата равна а√2.
Высота призмы равна h = a·tgα (из прямоугольного треугольника - половины боковой грани).
Квадрат диагонали призмы d² = h²+2a². (из прямоугольного треугольника - половины диагонального сечения).
d² = a²·tg²α+2a² = a²(2+tgα). => a = d/(√((2+tgα)).
h = a·tgα = d·tgα/(√((2+tgα)).
Тогда площадь диагонального сечения равна:
Sc = a√2·h = d√2/(√(2+tgα))·dtgα/(√(2+tgα)) = d²·tgα·√2/(2+tgα).
Площадь боковой поверхности равна произведению периметра основания на высоту призмы:
Sб = 4·a·h = 4d/(√((2+tgα))·d·tgα/(√((2+tgα)) = 4d²·tgα/(2+tgα).
Площадь основания (квадрата) равна квадрату стороны:
So = a² = d²/(2+tgα).