В прямоугольном треугольнике катеты a и b равны 1. Найдите гипотенузу c и площадь каждого квадрата, построенного на сторонах данного треугольника. ответ: a2 = , b2 = , c2 =
Перпендикуляр, проведенный через середину боковой стороны равнобедренного треугольника, делит высоту, проведенную к основанию, на отрезки 17 см и 8 см, считая от вершины. Найти площадь и периметр данного треугольника.
Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Найти площадь и периметр данного треугольника.
Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Р=30+2•5√34=10•(3+√34) см
S=BH•CH=375 см²
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.