В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
хорошист549
хорошист549
01.05.2021 00:24 •  Геометрия

В прямоугольном треугольнике один из катетов равен 13 см а противолежащий угол равен 35 градусов Найдите второй катет противолежащий ему угол и гипотенузу​

Показать ответ
Ответ:
noeva2005
noeva2005
30.12.2020 15:40

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​
0,0(0 оценок)
Ответ:
Эзоз
Эзоз
31.08.2021 14:45

1. Радиус сферы равен половине диаметра, R = 25 см.

Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.

Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:

АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм

Линия пересечения сферы плоскостью - окружность. Ее длина:

C = 2π·AC = 2π · 20 = 40π см

2. Сечение шара - круг. Его площадь равна 36π см²:

Sсеч = π · r² = 36π

r² = 36

r = 6 см

Из прямоугольного треугольника АОС по теореме Пифагора:

ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.

3. Радиус большого круга равен радиусу шара.

Площадь сечения:

Sсеч = πr²

Площадь большого круга:

S = πR², R = √(S/π)

Sсеч / S = πr² / (πR²) = r²/ R²

По условию Sсеч / S = 3 / 4, ⇒

r²/ R² = 3 / 4, тогда r/R = √3/2

В прямоугольном треугольнике АОС r/R - это косинус угла А.

Тогда ∠А = 30°.

Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен

OC = R/2 = √(S/π) / 2 = √S/(2√π)

4. Радиус шара равен половине диаметра:

R = 2√3 см

Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому

ОС = r = R/√2 = 2√3 / √2 = √6 см

Sсеч = πr² = π · (√6)² = 6π см²

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота