Диагональ основания по теореме Пифагора будет равна 13 см. Треугольник, образованный из высоты, диагонали основания и диагонали прямоугольного параллелепипеда будет прямоугольным и с острым углом 30 градусов. По определению: тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета (высота) к прилежащему (диагональ основания). Значит высота равна диагональ основания (13 см) умноженная на тангенс 30 градусов(корень из 3 деленное на 3). высота равна 13 корней из 3 деленных на 3 . Площадь боковой поверхности равна периметр основания, умноженный на высоту Р=2(5+12)=34 и площадь 34*13 корней из 3, деленных на 3
Площадь круга находится по формуле S=πR² Так как треугольник равносторонний, то радиус окружности равен расстоянию от центра окружности до вершин треугольника. Центр описанной около равностороннего треугольника окружности лежит в точке пересечения медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины. Следовательно радиус описанной окружности составляет две трети от длины медианы. Если обозначить треугольник как АВС, О - центр окружности, ВО - радиус окружности, ВF - медиана: R=ВО=2/3 * BF Медиана равностороннего треугольника равна: BF=(a√3)/2 (по теореме Пифагора ВF=√(a²-(a/2)²)=√((4a²-a²)/4)=a√3/2 ) a - сторона треугольника Отсюда радиус: R=2/3 * a√3/2 = a√3/3 Подставляем в формулу площади круга: S=π * (a√3/3)² = 3πa²/9 = πa²/3 = π*(2√3)²/3 = 4π ≈ 12,56 см²
S=πR²
Так как треугольник равносторонний, то радиус окружности равен расстоянию от центра окружности до вершин треугольника. Центр описанной около равностороннего треугольника окружности лежит в точке пересечения медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины. Следовательно радиус описанной окружности составляет две трети от длины медианы. Если обозначить треугольник как АВС, О - центр окружности, ВО - радиус окружности, ВF - медиана:
R=ВО=2/3 * BF
Медиана равностороннего треугольника равна:
BF=(a√3)/2 (по теореме Пифагора ВF=√(a²-(a/2)²)=√((4a²-a²)/4)=a√3/2 )
a - сторона треугольника
Отсюда радиус:
R=2/3 * a√3/2 = a√3/3
Подставляем в формулу площади круга:
S=π * (a√3/3)² = 3πa²/9 = πa²/3 = π*(2√3)²/3 = 4π ≈ 12,56 см²