Для начала найдём высоту ромба. S(АВСД)=а²·sinα=8²/2=32 см². S(АВСД)=a·Н ⇒ Н=S(АВСД)/а=32/8=4 см.
В правильном треугольнике АДК КЕ - высота. КЕ=а√3/2=4√3 см.
Прямые АД и ВС параллельны. Проведём МЕ⊥АД, М∈ВС ⇒ МЕ⊥ВС. МЕ=Н=4 см. КЕ⊥АД и МЕ⊥ВС, значит по теореме о трёх перпендикулярах КМ⊥ВС, следовательно КМ=4√2 см (по условию).
КЕ⊥АД и МЕ⊥АД, значит ∠КЕМ - линейный угол двугранного угла КАДМ или угол между плоскостями АДК и АВС.
В треугольнике КМЕ по теореме косинусов: cos∠КЕМ=(КЕ²+МЕ²-КМ²)/(2КЕ·МЕ), cos∠КЕМ=(48+16-32)/(2·4√3·4)=32/(32√3)=1/√3 - это ответ.
Для начала найдём высоту ромба.
S(АВСД)=а²·sinα=8²/2=32 см².
S(АВСД)=a·Н ⇒ Н=S(АВСД)/а=32/8=4 см.
В правильном треугольнике АДК КЕ - высота. КЕ=а√3/2=4√3 см.
Прямые АД и ВС параллельны. Проведём МЕ⊥АД, М∈ВС ⇒ МЕ⊥ВС. МЕ=Н=4 см.
КЕ⊥АД и МЕ⊥ВС, значит по теореме о трёх перпендикулярах КМ⊥ВС, следовательно КМ=4√2 см (по условию).
КЕ⊥АД и МЕ⊥АД, значит ∠КЕМ - линейный угол двугранного угла КАДМ или угол между плоскостями АДК и АВС.
В треугольнике КМЕ по теореме косинусов:
cos∠КЕМ=(КЕ²+МЕ²-КМ²)/(2КЕ·МЕ),
cos∠КЕМ=(48+16-32)/(2·4√3·4)=32/(32√3)=1/√3 - это ответ.
О - точка перетину діагоналей
Діагоналі ромба (як паралелограма) перетинаються і в точці перетину діляться пополам, тому АО=16:2=8 см
Діагоналі ромба перетинаються під прямим кутом. Тому трикутник АОВ прямокутний з прямим кутом О
За теоремою Піфагора
Значить друга діагональ дорівнює BD=2BO=2*6=12 см
Площа ромба дорівнює половині добутку діагоналей. Площа ромба (як паралелограма) дорівнює добутку сторони на висоту проведену до цієї сторони.
звідки висота ромба дорівнює
см
відповідь: 9.6 см