❣️ В прямоугольной трапеции ABCD меньшее основание 8 см, а высота BM делит основание AD пополам. Найдите площадь трапеции. Если высота BM равна 12 см.
4) Найдем точки пересечения касательной с осями координат x = 0: f(0) = -13; f(x) = 0: 5x - 13 = 0; x = 13/5
5) Этот треугольник - прямоугольный с катетами 13 и 13/5. Его площадь равна половине произведения катетов. S = 1/2*13*13/5 = 169/10 = 16,9 ответ: 1. 16,9
Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4
f(x) = y(x0) + y ' (x0)*(x - x0)
1) Найдем производную
y ' (x) = 4x - 3
y ' (x0) = f ' (2) = 4*2 - 3 = 5
2) y(x0) = y(2) = 2*2^2 - 3*2 - 5 = 8 - 6 - 5 = -3
3) Касательная
f(x) = -3 + 5(x - 2) = -3 + 5x - 10 = 5x - 13
4) Найдем точки пересечения касательной с осями координат
x = 0: f(0) = -13;
f(x) = 0: 5x - 13 = 0; x = 13/5
5) Этот треугольник - прямоугольный с катетами 13 и 13/5.
Его площадь равна половине произведения катетов.
S = 1/2*13*13/5 = 169/10 = 16,9
ответ: 1. 16,9
4 см
Объяснение:
Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4