В прямоугольной трапеции ABCD с основаниями AD и BC диагональ BD равна 18, а угол А равен 45°. Найдите большую боковую сторону, если меньшее основание трапеции равно 122. Запишите решение и ответ.
1. Аксиома – это очевидные положения геометрии, не требующие доказательств.
2. Через точку, не лежащую на данной прямой, проходит
а) только одна прямая, параллельная данной.
3. Не может быть следствием аксиомы или теоремы:
а) утверждение, не требующее доказательств.
4. Следствия аксиомы параллельных прямых:
б) если две прямые параллельны третьей прямой, то они параллельны друг другу.
в) если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
г) если три прямые параллельны, то любые две из них параллельны друг другу.
5. Если через точку, лежащую вне прямой, проведено несколько прямых, то сколько из них пересекаются с исходной прямой?
б) все, кроме параллельной прямой.
6. Если одна из прямых, проходящих через точку, лежащую вне заданной прямой, параллельна этой прямой, то другие прямые, проходящие через точку, не могут быть ей параллельны, потому что
ответ: 3 см, 12 см.
Объяснение:
АВ = 11 см и АС = 16 см - наклонные к прямой а,
АН - перпендикуляр к прямой а, тогда
ВН и СН - проекции соответствующих наклонных.
Большей наклонной соответствует большая проекция.
Пусть ВН = х см, тогда СН = (х + 9) см.
Из прямоугольного треугольника АВН по теореме Пифагора выразим АН:
АН² = АВ² - ВН²
АН² = 11² - x² = 121 - x²
И выразим АН по теореме Пифагора из прямоугольного треугольника АСН:
AH² = AC² - CH²
AH² = 16² - (x + 9)² = 256 - (x² + 18x + 81) =
= 256 - x² - 18x - 81 = 175 - x²- 18х
Приравняем правые части получившихся равенств:
121 - x² = 175 - x²- 18х
18x = 54
x = 3
ВН = 3 см
СН = 3 + 9 = 12 см
1. Аксиома – это очевидные положения геометрии, не требующие доказательств.
2. Через точку, не лежащую на данной прямой, проходит
а) только одна прямая, параллельная данной.
3. Не может быть следствием аксиомы или теоремы:
а) утверждение, не требующее доказательств.
4. Следствия аксиомы параллельных прямых:
б) если две прямые параллельны третьей прямой, то они параллельны друг другу.
в) если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
г) если три прямые параллельны, то любые две из них параллельны друг другу.
5. Если через точку, лежащую вне прямой, проведено несколько прямых, то сколько из них пересекаются с исходной прямой?
б) все, кроме параллельной прямой.
6. Если одна из прямых, проходящих через точку, лежащую вне заданной прямой, параллельна этой прямой, то другие прямые, проходящие через точку, не могут быть ей параллельны, потому что
а) это противоречит аксиоме параллельных прямых.